Soil chemical and physical properties

The code and data set is continuously being updated. If you notice a bug or typo, please open an issue and report.

Last update: 2025-01-21

Overview

This section describes import steps used to produce a global compilation of soil laboratory data with chemical (and physical) soil properties that can be then used for predictive soil mapping / modeling at global and regional scales.

Read more about soil chemical properties, global soil profile and sample data sets and functionality:

Specifications

Data standards

Target variables:

site.names = c("site_key", "upedonid", "site_obsdate", "longitude_decimal_degrees", 
               "latitude_decimal_degrees", "SSL_classification_name")
hor.names = c("labsampnum", "site_key", "layer_key", "layer_sequence", "hzn_top","hzn_bot", 
              "hzn_desgn", "texture_description", "texture_lab", "clay_total", "silt_total", 
              "sand_total", "organic_carbon", "oc_d", "total_carbon_ncs", "total_nitrogen_ncs", 
              "ph_kcl", "ph_h2o", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "cec_nh4_ph_7", "ecec_base_plus_aluminum", 
              "total_frag_wt_pct_gt_2_mm_ws", "bulk_density_oven_dry", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
## target structure:
col.names = unique(c(site.names, hor.names, "source_db", "confidence_degree", "project_url", "citation_url"))

Target variables listed:

  • clay_total: Clay, Total in % wt for <2 mm soil fraction,
  • silt_total: Silt, Total in % wt for <2 mm soil fraction,
  • sand_total: Sand, Total in % wt for <2 mm soil fraction,
  • organic_carbon: Carbon, Organic in g/kg for <2 mm soil fraction based on Dry combustion,
  • oc_d: Soil organic carbon density in kg/m3,
  • total_carbon_ncs: Carbon, Total in g/kg for <2 mm soil fraction,
  • total_nitrogen_ncs: Nitrogen, Total NCS in g/kg for <2 mm soil fraction,
  • ph_kcl: pH, KCl Suspension for <2 mm soil fraction,
  • ph_h2o: pH, 1:1 Soil-Water Suspension for <2 mm soil fraction,
  • ph_cacl2: pH, CaCl2 Suspension for <2 mm soil fraction,
  • sum_of_cations_cec_pH_8_2: Cation Exchange Capacity, Summary, in cmol(+)/kg for <2 mm soil fraction,
  • cec_nh4_ph_7: Cation Exchange Capacity, NH4 prep, in cmol(+)/kg for <2 mm soil fraction,
  • ecec_base_plus_aluminum: Cation Exchange Capacity, Effective, CMS derived value default, standa prep in cmol(+)/kg for <2 mm soil fraction,
  • total_frag_wt_pct_gt_2_mm_ws: Coarse fragments in % wt for >2 mm soil fraction,
  • bulk_density_oven_dry: Bulk density (Oven Dry) in g/cm3 (4A1h),
  • ca_ext: Calcium, Extractable in mg/kg for <2 mm soil fraction (usually Mehlich3),
  • mg_ext: Magnesium, Extractable in mg/kg for <2 mm soil fraction (usually Mehlich3),
  • na_ext: Sodium, Extractable in mg/kg for <2 mm soil fraction (usually Mehlich3),
  • k_ext: Potassium, Extractable in mg/kg for <2 mm soil fraction (usually Mehlich3),
  • ec_water_extractable: Electrical Conductivity, Saturation Extract in dS/m for <2 mm soil fraction,
  • ec_predict_one_to_two: Electrical Conductivity, Predict, 1:2 (w/w) in dS/m for <2 mm soil fraction,

Data import

National Cooperative Soil Survey Characterization Database

The November 2024 version contains 67,367 sites. This is the world largest open soil laboratory database to date.

  • National Cooperative Soil Survey, (2024). National Cooperative Soil Survey Characterization Database. Data download URL: http://ncsslabdatamart.sc.egov.usda.gov/
  • Nauman, T.W., Kienast‐Brown, S., Roecker, S.M., Brungard, C., White, D., Philippe, J., & Thompson, J.A. (2024). Soil landscapes of the United States (SOLUS): Developing predictive soil property maps of the conterminous United States using hybrid training sets. Soil Sci. Soc. Am. J. https://doi.org/10.1002/saj2.20769

This data set is continuously updated.

if(!exists("chemsprops.NCSS")){
  #nccs.xy = terra::vect("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/ncss_labdata_locations.gpkg")
  #ncss.site <- dplyr::bind_cols(as.data.frame(nccs.xy), geom(nccs.xy))
  ncss.site <- vroom::vroom("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/ncss_labdata_locations.csv.gz")
  ## Rows: 67367 Columns: 88
  #plot(ncss.site[,c("longitude_decimal_degrees","latitude_decimal_degrees")])
  ncss.chem <- vroom::vroom("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_lab_chemical_properties.csv.gz")
  ## Rows: 325740 Columns: 210
  summary(as.factor(ncss.chem$total_carbon_ncs_method))
  #summary(ncss.chem$organic_carbon_walkley_black)
  #summary(!is.na(ncss.chem$organic_carbon_walkley_black))
  ## 213,940 samples with SOC
  ncss.phys <- vroom::vroom("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_lab_physical_properties.csv.gz")
  ## Rows: 406281 Columns: 123
  ncss.layer <- vroom::vroom("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/NCSS_lab_layer.csv.gz")
  ## Rows: 417656 Columns: 24
  ## Quality-controlled data prepared by NRCS:
  # 'oc_wbc_final' = final Walkley Black SOC estimate that still needs to be scaled to dry combustion. This harmonizes across all reasonable organic carbon data sources in the NCSS DB
  # 'bd_od_pred'  = a final oven dry bulk density estimate
  # 'total_frags_pct_nopf' = volumetric rock content from NASIS
  oc.nm = c("labsampnum.x", "layer_key", "longitude_decimal_degrees", "latitude_decimal_degrees", "site_obsdate") ## "hzn_top", "hzn_bot", "hzn_desgn"
  oc_db_layers = read.table("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/tmp/oc_db_layers.txt.gz", sep = "\t", fill = TRUE, header = TRUE)[,c("labsampnum.x", "layer_key", "oc_wbc_final", "bd_od_pred")]
  #summary(!is.na(oc_db_layers$oc_wbc_final))
  oc_db_rk_layers = read.table("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/tmp/oc_db_rk_layers.txt.gz", sep = "\t", fill = TRUE, header = TRUE)[,c("labsampnum.x", "layer_key", "oc_wbc_final", "bd_od_pred", "total_frags_pct_nopf")]
  oc_layers = read.table("/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/tmp/oc_layers.txt.gz", sep = "\t", fill = TRUE, header = TRUE)[,c(oc.nm, "oc_wbc_final")]
  #summary(duplicated(oc_layers$labsampnum.x))
  #summary(!is.na(oc_layers$longitude_decimal_degrees))
  ## 41240 without coordinates
  #str(which(!oc_db_rk_layers$labsampnum.x %in% oc_layers$labsampnum.x))
  #summary(as.factor(substr(oc_layers$site_obsdate, 1, 4)))
  oc_db = dplyr::full_join(dplyr::full_join(oc_layers, oc_db_layers[,c("labsampnum.x", "bd_od_pred")], 
                         by = c("labsampnum.x"), multiple = "first"), 
                  oc_db_rk_layers[,c("labsampnum.x", "total_frags_pct_nopf")], by = c("labsampnum.x"), multiple = "first")
  #dim(oc_db)
  ## [1] 303286      8
  oc_db = plyr::rename(oc_db, replace = c("labsampnum.x" = "labsampnum"))
  #View(oc_db)
  ncss.horizons = dplyr::full_join(dplyr::full_join(oc_db, ncss.chem, 
                          by = c("labsampnum","layer_key")),
    dplyr::full_join(ncss.layer, ncss.phys, by = c("labsampnum","layer_key")), 
                              by = c("labsampnum","layer_key"))
  #summary(!is.na(ncss.horizons$oc_wbc_final))
  ## 303,286 
  ## translate to SOC DC
  ## https://doi.org/10.1016/j.geoderma.2021.115547
  ## SOC = 1.3 * WBC
  ncss.horizons$organic_carbon = ifelse(ncss.horizons$oc_wbc_final < 0, 0, (ncss.horizons$oc_wbc_final * 1.3) * 10)  ## g/kg
  #ggplot(ncss.horizons, aes(organic_carbon+1)) + geom_histogram() + scale_x_log10()
  ncss.horizons$year = as.numeric(substr(ncss.horizons$site_obsdate, 1, 4))
  ncss.horizons$year = ifelse(ncss.horizons$year>2024|ncss.horizons$year<1925, NA, ncss.horizons$year)
  viri <- c("#440154FF", "#39568CFF", "#1F968BFF", "#73D055FF", "#FDE725FF")
  scaleFUN <- function(x){round(x,0)}
  soc_year.plt <- ggplot(data=ncss.horizons, aes(year, organic_carbon)) +
     stat_binhex(bins = 30)  + scale_y_continuous(trans = "log1p") + #xlim(-5,105) + ylim(-5,105) + 
     theme(axis.text=element_text(size=8), legend.text=element_text(size=10), axis.title=element_text(size=10), plot.title = element_text(size=10, hjust=0.5)) + xlab("Year") + ylab("SOC [g/kg]") + 
    scale_fill_gradientn(name = "Count", trans = "log", colours = rev(viri), labels=scaleFUN) + ggtitle("")
  #soc_year.plt
  #summary(ncss.horizons$organic_carbon)
  ncss.horizons$organic_carbon = ifelse(ncss.horizons$organic_carbon > 900 | ncss.horizons$organic_carbon < 0, NA, ncss.horizons$organic_carbon)
  ## some values go >100% SOC (artifacts!)
  ncss.horizons$bulk_density_oven_dry = ifelse(ncss.horizons$bulk_density_oven_dry < 0.05 | ncss.horizons$bulk_density_oven_dry > 2.4, NA, ifelse(is.na(ncss.horizons$bulk_density_oven_dry), ncss.horizons$bd_od_pred, ncss.horizons$bulk_density_oven_dry))
  #hist(ncss.horizons$bulk_density_oven_dry, col="grey", breaks=40)
  #summary(!is.na(ncss.horizons$bulk_density_oven_dry))
  ## 94872
  ncss.horizons$total_frag_wt_pct_gt_2_mm_ws = ifelse(is.na(ncss.horizons$total_frag_wt_pct_gt_2_mm_ws), as.numeric(ncss.horizons$total_frags_pct_nopf), ifelse(as.numeric(ncss.horizons$total_frag_wt_pct_gt_2_mm_ws) > 99, NA, as.numeric(ncss.horizons$total_frag_wt_pct_gt_2_mm_ws)))
  #summary(ncss.horizons$total_frag_wt_pct_gt_2_mm_ws)
  ncss.horizons$oc_d = signif( ncss.horizons$organic_carbon / 1000 * ncss.horizons$bulk_density_oven_dry * 1000 * (100 - ifelse(is.na(ncss.horizons$total_frag_wt_pct_gt_2_mm_ws), 0, ncss.horizons$total_frag_wt_pct_gt_2_mm_ws))/100, 3)
  ncss.horizons$ca_ext = signif(ncss.horizons$ca_nh4_ph_7 * 200, 4)
  ncss.horizons$mg_ext = signif(ncss.horizons$mg_nh4_ph_7 * 121, 3)
  ncss.horizons$na_ext = signif(ncss.horizons$na_nh4_ph_7 * 230, 3)
  ncss.horizons$k_ext = signif(ncss.horizons$k_nh4_ph_7 * 391, 3)
  ncss.horizons$total_nitrogen_ncs = ncss.horizons$total_nitrogen_ncs * 10
  ## bind into single table
  #str(which(!ncss.horizons$site_key %in% ncss.site$site_key))
  chemsprops.NCSS = dplyr::left_join(ncss.horizons[,hor.names], ncss.site[,site.names], multiple = "first")
  ## Joining with `by = join_by(site_key)`Warning: Detected an unexpected many-to-many relationship between `x` and `y`.
  chemsprops.NCSS$site_obsdate = format(as.Date(chemsprops.NCSS$site_obsdate, format="%Y/%m/%d"), "%Y-%m-%d")
  #summary(as.Date(chemsprops.NCSS$site_obsdate))
  #      Min.      1st Qu.       Median         Mean      3rd Qu.         Max.         NA's 
  #"1925-11-01" "1981-02-01" "1992-10-27" "1991-08-27" "2006-04-09" "9863-06-01"      "14175" 
  #summary(as.numeric(substr(chemsprops.NCSS$site_obsdate, 1, 4))>1999 & !is.na(chemsprops.NCSS$oc_d))
  ## 21,672 records with 'oc_d' after year 1999
  chemsprops.NCSS$source_db = "USDA_NCSS"
  #dim(chemsprops.NCSS)
  ## 417656      36
  chemsprops.NCSS$confidence_degree = 1
  chemsprops.NCSS$project_url = "http://ncsslabdatamart.sc.egov.usda.gov/"
  chemsprops.NCSS$citation_url = "http://ncsslabdatamart.sc.egov.usda.gov/"
  chemsprops.NCSS = complete.vars(chemsprops.NCSS, sel=c("hzn_top", "hzn_bot", "organic_carbon", "clay_total", "ecec_base_plus_aluminum", "ph_h2o", "ec_predict_one_to_two", "k_ext"), remove.duplicates = FALSE)
  #summary(chemsprops.NCSS$oc_d)
  ## mean = 16.3; median = 8.0
  #summary(chemsprops.NCSS$organic_carbon)
  ## mean = 21.7; median = 5.5
  chemsprops.NCSS = chemsprops.NCSS[,col.names]
  saveRDS.gz(chemsprops.NCSS, "/mnt/diskstation/data/Soil_points/INT/USDA_NCSS/chemsprops.NCSS.rds")
}
New names:
• `` -> `...1`
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 67367 Columns: 88
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (58): pedlabsampnum, upedonid, priority, priority2, samp_name, samp_clas...
dbl (24): ...1, OBJECTID, objectid_1, pedon_key, site_key, peiid, labdatades...
lgl  (6): SSL_taxpartsizemod, SSL_taxother, SSL_osdtypelocflag, samp_taxfamh...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 325740 Columns: 210
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (52): labsampnum, prep_code, ca_nh4_ph_7_method, mg_nh4_ph_7_method, na_...
dbl (74): OBJECTID, objectid_1, layer_key, result_source_key, ca_nh4_ph_7, m...
lgl (84): iron_kcl_extractable, iron_kcl_extractable_method, ph_oxidized, ph...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 406281 Columns: 123
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (20): labsampnum, prep_code, texture_lab, particle_size_method, bulk_den...
dbl (57): OBJECTID, objectid_1, layer_key, result_source_key, clay_total, si...
lgl (46): bulk_density_tenth_bar, bulk_density_tenth_bar_method, bulk_densit...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 417656 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (10): labsampnum, layer_type, layer_field_label_1, layer_field_label_2, ...
dbl (12): OBJECTID, objectid_1, layer_key, project_key, site_key, pedon_key,...
lgl  (2): hzn_prime, hzn_desgn_other

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Joining with `by = join_by(site_key)`
dim(chemsprops.NCSS)
[1] 346203     39
## [1] 346203     39

SOC measurements based on the National Cooperative Soil Survey Characterization Database over time.

National Geochemical Database Soil

if(!exists("chemsprops.USGS.NGS")){
  ngs.points <- read.csv("/mnt/diskstation/data/Soil_points/USA/geochemical/ds-801-csv/site.txt", sep=",")
  ## 4857 pnts
  ngs.layers <- lapply(c("top5cm.txt", "ahorizon.txt", "chorizon.txt"), function(i){read.csv(paste0("/mnt/diskstation/data/Soil_points/USA/geochemical/ds-801-csv/", i), sep=",")})
  ngs.layers = plyr::rbind.fill(ngs.layers)
  #dim(ngs.layers)
  # 14571  126
  #summary(ngs.layers$tot_carb_pct)
  #lattice::xyplot(c_org_pct ~ c_tot_pct, ngs.layers, scales=list(x = list(log = 2), y = list(log = 2)))
  #lattice::xyplot(c_org_pct ~ tot_clay_pct, ngs.layers, scales=list(y = list(log = 2)))
  ngs.layers$total_carbon_ncs = ngs.layers$c_tot_pct * 10
  ## "The sample was combusted in an oxygen atmosphere at 1,370 ºC to oxidize C to carbon dioxide (CO2)"
  ngs.layers$organic_carbon = ngs.layers$c_org_pct * 10 
  ngs.layers$hzn_top = sapply(ngs.layers$depth_cm, function(i){strsplit(i, "-")[[1]][1]})
  ngs.layers$hzn_bot = sapply(ngs.layers$depth_cm, function(i){strsplit(i, "-")[[1]][2]})
  #summary(ngs.layers$tot_clay_pct)
  #summary(ngs.layers$k_pct) ## very high numbers?
  ## question is if the geochemical element results are compatible with e.g. k_ext?
  t.ngs = c("lab_id", "site_id", "horizon", "hzn_top", "hzn_bot", "tot_clay_pct", "total_carbon_ncs", "organic_carbon")
  ngs.m = plyr::join(ngs.points, ngs.layers[!is.na(ngs.layers$c_org_pct),t.ngs])
  ngs.m$site_obsdate = as.Date(ngs.m$colldate, format="%Y-%m-%d") 
  #summary(substr(ngs.m$site_obsdate, 1, 4)>1999)
  ngs.h.lst <- c("site_id", "quad", "site_obsdate", "longitude", "latitude", "SSL_classification_name", "lab_id", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "horizon", "tex_psda", "texture_lab", "tot_clay_pct", "silt_total", 
              "sand_total", "organic_carbon", "oc_d", "total_carbon_ncs", "total_nitrogen_ncs", 
              "ph_kcl", "ph_h2o", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "cec_nh4_ph_7", "ecec_base_plus_aluminum", 
              "total_frag_wt_pct_gt_2_mm_ws", "bulk_density_oven_dry", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = ngs.h.lst[which(!ngs.h.lst %in% names(ngs.m))]
  if(length(x.na)>0){ for(i in x.na){ ngs.m[,i] = NA } }
  chemsprops.USGS.NGS = ngs.m[,ngs.h.lst]
  chemsprops.USGS.NGS$source_db = "USGS.NGS"
  chemsprops.USGS.NGS$confidence_degree = 1
  chemsprops.USGS.NGS$project_url = "https://mrdata.usgs.gov/ds-801/"
  chemsprops.USGS.NGS$citation_url = "https://pubs.usgs.gov/ds/801/"
  chemsprops.USGS.NGS = complete.vars(chemsprops.USGS.NGS, sel = c("tot_clay_pct", "organic_carbon"), coords = c("longitude", "latitude"))
  #summary(chemsprops.USGS.NGS$organic_carbon)
  saveRDS.gz(chemsprops.USGS.NGS, "/mnt/diskstation/data/Soil_points/USA/geochemical/ds-801-csv/chemsprops.USGS.NGS.rds")
}
Joining by: site_id
dim(chemsprops.USGS.NGS)
[1] 9447   39
## [1] 9447   39

Africa soil profiles database

if(!exists("chemsprops.AfSPDB")){
  library(foreign)
  afspdb.profiles <- read.dbf("/mnt/diskstation/data/Soil_points/AF/AfSIS_SPDB/AfSP012Qry_Profiles.dbf", as.is=TRUE)
  afspdb.layers <- read.dbf("/mnt/diskstation/data/Soil_points/AF/AfSIS_SPDB/AfSP012Qry_Layers.dbf", as.is=TRUE)
  afspdb.s.lst <- c("ProfileID", "FldMnl_ID", "T_Year", "X_LonDD", "Y_LatDD")
  #summary(afspdb.layers$BlkDens)
  ## add missing columns
  for(j in 1:ncol(afspdb.layers)){ 
    if(is.numeric(afspdb.layers[,j])) { 
      afspdb.layers[,j] <- ifelse(afspdb.layers[,j] < 0, NA, afspdb.layers[,j]) 
    }
  }
  afspdb.layers$ca_ext = afspdb.layers$ExCa * 200
  afspdb.layers$mg_ext = afspdb.layers$ExMg * 121
  afspdb.layers$na_ext = afspdb.layers$ExNa * 230
  afspdb.layers$k_ext = afspdb.layers$ExK * 391
  #summary(afspdb.layers$k_ext)
  afspdb.m = plyr::join(afspdb.profiles[,afspdb.s.lst], afspdb.layers)
  #summary(afspdb.m$OrgC)
  afspdb.m$oc_d = signif(afspdb.m$OrgC * afspdb.m$BlkDens * (100 - ifelse(is.na(afspdb.m$CfPc), 0, afspdb.m$CfPc))/100, 3)
  #summary(afspdb.m$oc_d)
  #summary(afspdb.m$T_Year)
  afspdb.m$T_Year = ifelse(afspdb.m$T_Year < 0, NA, afspdb.m$T_Year)
  afspdb.h.lst <- c("ProfileID", "FldMnl_ID", "T_Year", "X_LonDD", "Y_LatDD", "USDA", "LayerID", "LyrObj", "LayerNr", "UpDpth", "LowDpth", "HorDes", "texture_description", "LabTxtr", "Clay", "Silt", "Sand", "OrgC", "oc_d", "TotC", "TotalN", "PHKCl", "PHH2O", "PHCaCl2", "CecSoil", "cec_nh4", "Ecec", "CfPc" , "BlkDens", "ca_ext", "mg_ext", "na_ext", "k_ext", "EC", "ec_12pre")
  x.na = afspdb.h.lst[which(!afspdb.h.lst %in% names(afspdb.m))]
  if(length(x.na)>0){ for(i in x.na){ afspdb.m[,i] = NA } }
  chemsprops.AfSPDB = afspdb.m[,afspdb.h.lst]
  chemsprops.AfSPDB$source_db = "AfSPDB"
  chemsprops.AfSPDB$confidence_degree = 5
  chemsprops.AfSPDB$project_url = "https://www.isric.org/projects/africa-soil-profiles-database-afsp"
  chemsprops.AfSPDB$citation_url = "https://www.isric.org/sites/default/files/isric_report_2014_01.pdf"
  chemsprops.AfSPDB = complete.vars(chemsprops.AfSPDB, sel = c("LabTxtr","OrgC","Clay","Ecec","PHH2O","EC","k_ext"), coords = c("X_LonDD", "Y_LatDD"))
  saveRDS.gz(chemsprops.AfSPDB, "/mnt/diskstation/data/Soil_points/AF/AfSIS_SPDB/chemsprops.AfSPDB.rds")
}
Joining by: ProfileID
dim(chemsprops.AfSPDB)
[1] 68833    39
## [1] 68833    39

Africa Soil Information Service (AfSIS) Soil Chemistry

  • Towett, E. K., Shepherd, K. D., Tondoh, J. E., Winowiecki, L. A., Lulseged, T., Nyambura, M., … & Cadisch, G. (2015). Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors. Geoderma Regional, 5, 157-168. https://doi.org/10.1016/j.geodrs.2015.06.002
  • AfSIS Soil Chemistry produced by World Agroforestry Centre (ICRAF), Quantitative Engineering Design (QED), Center for International Earth Science Information Network (CIESIN), The International Center for Tropical Agriculture (CIAT), Crop Nutrition Laboratory Services (CROPNUTS) and Rothamsted Research (RRES). Data download URL: https://registry.opendata.aws/afsis/
if(!exists("chemsprops.AfSIS1")){
  afsis1.xy = read.csv("/mnt/diskstation/data/Soil_points/AF/AfSIS_SSL/2009-2013/Georeferences/georeferences.csv")
  afsis1.xy$Sampling.date = 2011
  afsis1.lst = list.files("/mnt/diskstation/data/Soil_points/AF/AfSIS_SSL/2009-2013/Wet_Chemistry", pattern=glob2rx("*.csv$"), full.names = TRUE, recursive = TRUE)
  afsis1.hor = plyr::rbind.fill(lapply(afsis1.lst, read.csv))
  tansis.xy = read.csv("/mnt/diskstation/data/Soil_points/AF/AfSIS_SSL/tansis/Georeferences/georeferences.csv")
  #summary(tansis.xy$Sampling.date)
  tansis.xy$Sampling.date = 2018
  tansis.lst = list.files("/mnt/diskstation/data/Soil_points/AF/AfSIS_SSL/tansis/Wet_Chemistry", pattern=glob2rx("*.csv$"), full.names = TRUE, recursive = TRUE)
  tansis.hor = plyr::rbind.fill(lapply(tansis.lst, read.csv))
  afsis1t.df = plyr::rbind.fill(list(plyr::join(afsis1.hor, afsis1.xy, by="SSN"), plyr::join(tansis.hor, tansis.xy, by="SSN")))
  afsis1t.df$UpDpth = ifelse(afsis1t.df$Depth=="sub", 20, 0)
  afsis1t.df$LowDpth = ifelse(afsis1t.df$Depth=="sub", 50, 20)
  afsis1t.df$LayerNr = ifelse(afsis1t.df$Depth=="sub", 2, 1)
  #summary(afsis1t.df$C...Org)
  afsis1t.df$oc = rowMeans(afsis1t.df[,c("C...Org", "X.C")], na.rm=TRUE) * 10
  afsis1t.df$c_tot = afsis1t.df$Total.carbon
  afsis1t.df$n_tot = rowMeans(afsis1t.df[,c("Total.nitrogen", "X.N")], na.rm=TRUE) * 10
  afsis1t.df$ph_h2o = rowMeans(afsis1t.df[,c("PH", "pH")], na.rm=TRUE)
  ## multiple texture fractions - which one is the total clay, sand, silt?
  ## Clay content for water dispersed particles-recorded after 4 minutes of ultrasonication
  #summary(afsis1t.df$Psa.w4clay)
  #plot(afsis1t.df[,c("Longitude", "Latitude")])
  afsis1.h.lst <- c("SSN", "Site", "Sampling.date", "Longitude", "Latitude", "SSL_classification_name", "Soil.material", "layer_key", "LayerNr", "UpDpth", "LowDpth", "HorDes", "texture_description", "LabTxtr", "Psa.w4clay", "Psa.w4silt", "Psa.w4sand", "oc", "oc_d", "c_tot", "n_tot", "PHKCl", "ph_h2o", "PHCaCl2", "CecSoil", "cec_nh4", "Ecec", "CfPc" , "BlkDens", "ca_ext", "M3.Mg", "M3.Na", "M3.K", "EC", "ec_12pre")
  x.na = afsis1.h.lst[which(!afsis1.h.lst %in% names(afsis1t.df))]
  if(length(x.na)>0){ for(i in x.na){ afsis1t.df[,i] = NA } }
  chemsprops.AfSIS1 = afsis1t.df[,afsis1.h.lst]
  chemsprops.AfSIS1$source_db = "AfSIS1"
  chemsprops.AfSIS1$confidence_degree = 2
  chemsprops.AfSIS1$project_url = "https://registry.opendata.aws/afsis/"
  chemsprops.AfSIS1$citation_url = "https://doi.org/10.1016/j.geodrs.2015.06.002"
  chemsprops.AfSIS1 = complete.vars(chemsprops.AfSIS1, sel = c("Psa.w4clay","oc","ph_h2o","M3.K"), coords = c("Longitude", "Latitude"))
  saveRDS.gz(chemsprops.AfSIS1, "/mnt/diskstation/data/Soil_points/AF/AfSIS_SSL/chemsprops.AfSIS1.rds")
}
dim(chemsprops.AfSIS1)
[1] 4369   39
## [1] 4369   39

Innovative Solutions for Decision Agriculture Ltd (ISDA)

Note: Year of sampling is not specified, hence of limited use for spatiotemporal modeling.

if(!exists("chemsprops.isda")){
  isda.xy = read.csv("/mnt/diskstation/data/Soil_points/AF/ISDA/iSDA_soil_data.csv")
  #summary(as.Date(isda.xy$end_date, format="%d/%m/%Y"))
  #summary(as.factor(isda.xy$source))
  #library("ggplot2")
  #library("scales")
  # ggplot(isda.xy, aes(as.POSIXct(Sampling.date), ..count..)) + 
  #   geom_histogram() +
  #   theme_bw() + xlab(NULL) +
  #   scale_x_datetime(breaks = date_breaks("3 months"),
  #                    labels = date_format("%Y-%b"),
  #                    limits = c(as.POSIXct("2008-01-01"), 
  #                               as.POSIXct("2020-12-31")) )
  #head(isda.xy)
  #plot(isda.xy[,c("longitude", "latitude")])
  isda.xy$labsampnum = paste0("ISDA.", 1:nrow(isda.xy))
  isda.h.lst <- c("site_key", "upedonid", "site_obsdate", "longitude", 
              "latitude", "SSL_classification_name", "labsampnum",
              "layer_key", "layer_sequence", "horizon_upper", 
              "horizon_lower", "hzn_desgn", "texture_description",
              "texture_lab", "clay_total", "silt_total", "sand_total",
              "carbon_organic", "oc_d", "carbon_total", "nitrogen_total", "ph_kcl", "ph",
              "ph_cacl2", "sum_of_cations_cec_pH_8_2",
              "cec_nh4_ph_7", "ecec_base_plus_aluminum", "total_frag_wt_pct_gt_2_mm_ws",
              "bulk_density_oven_dry", "calcium_extractable", "magnesium_extractable", "sodium_extractable",
              "potassium_extractable", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = isda.h.lst[which(!isda.h.lst %in% names(isda.xy))]
  if(length(x.na)>0){ for(i in x.na){ isda.xy[,i] = NA } }
  chemsprops.isda = isda.xy[,isda.h.lst]
  chemsprops.isda$source_db = "ISDA"
  chemsprops.isda$confidence_degree = 4
  chemsprops.isda$project_url = "https://www.isda-africa.com/"
  chemsprops.isda$citation_url = "https://doi.org/10.17605/OSF.IO/A69R5"
  chemsprops.isda = complete.vars(chemsprops.isda, sel = c("carbon_organic","ph"), coords = c("longitude", "latitude"))
  saveRDS.gz(chemsprops.isda, "/mnt/diskstation/data/Soil_points/AF/ISDA/chemsprops.isda.rds")
}
dim(chemsprops.isda)
[1] 49225    39
## [1] 49225    39

Fine Root Ecology Database (FRED)

if(!exists("chemsprops.FRED")){
  Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 2)
  fred = vroom::vroom("/mnt/diskstation/data/Soil_points/INT/FRED/FRED3_Entire_Database_2021.csv", skip = 10, col_names=FALSE)
  ## 57,190 x 1,164
  #nm.fred = read.csv("/mnt/diskstation/data/Soil_points/INT/FRED/FRED3_Column_Definitions_20210423-091040.csv", header=TRUE)
  nm.fred0 = read.csv("/mnt/diskstation/data/Soil_points/INT/FRED/FRED3_Entire_Database_2021.csv", nrows=2)
  names(fred) = make.names(t(nm.fred0)[,1])
  ## 1164 columns!
  #summary(fred$Soil.organic.C.content)
  fred.h.lst = c("Notes_Row.ID", "Data.source_DOI", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "Soil.horizon", "Soil.texture", "texture_lab", "Soil.texture_Fraction.clay", "Soil.texture_Fraction.silt", "Soil.texture_Fraction.sand", "Soil.organic.C.content", "oc_d", "c_tot", "Soil.N.content", "ph_kcl", "Soil.pH_Water", "Soil.pH_Salt", "Soil.cation.exchange.capacity..CEC.", "cec_nh4", "Soil.effective.cation.exchange.capacity..ECEC.", "wpg2", "Soil.bulk.density", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre", "source_db", "confidence_degree")
  fred$site_obsdate = as.integer(rowMeans(fred[,c("Sample.collection_Year.ending.collection", "Sample.collection_Year.beginning.collection")], na.rm=TRUE))
  #summary(fred$site_obsdate)
  fred$longitude_decimal_degrees = ifelse(is.na(fred$Longitude), fred$Longitude_Estimated, fred$Longitude)
  fred$latitude_decimal_degrees = ifelse(is.na(fred$Latitude), fred$Latitude_Estimated, fred$Latitude)
  #names(fred)[grep("Notes_Row", names(fred))]
  #summary(fred[,grep("clay", names(fred))])
  #summary(fred[,grep("cation.exchange", names(fred))])
  #summary(fred[,grep("organic.C", names(fred))])
  #summary(fred$Soil.organic.C.content)
  #summary(fred$Soil.bulk.density)
  #summary(as.factor(fred$Soil.horizon))
  fred$hzn_bot = ifelse(is.na(fred$Soil.depth_Lower.sampling.depth), fred$Soil.depth - 5, fred$Soil.depth_Lower.sampling.depth)
  fred$hzn_top = ifelse(is.na(fred$Soil.depth_Upper.sampling.depth), fred$Soil.depth + 5, fred$Soil.depth_Upper.sampling.depth)
  fred$oc_d = signif(fred$Soil.organic.C.content / 1000 * fred$Soil.bulk.density * 1000, 3)
  #summary(fred$oc_d)  
  x.na = fred.h.lst[which(!fred.h.lst %in% names(fred))]
  if(length(x.na)>0){ for(i in x.na){ fred[,i] = NA } }
  chemsprops.FRED = fred[,fred.h.lst]
  #plot(chemsprops.FRED[,4:5])
  chemsprops.FRED$source_db = "FRED"
  chemsprops.FRED$confidence_degree = 5
  chemsprops.FRED$project_url = "https://roots.ornl.gov/"
  chemsprops.FRED$citation_url = "https://doi.org/10.25581/ornlsfa.014/1459186"
  chemsprops.FRED = complete.vars(chemsprops.FRED, sel = c("Soil.organic.C.content", "Soil.texture_Fraction.clay", "Soil.pH_Water"))
  ## many duplicates
  saveRDS.gz(chemsprops.FRED, "/mnt/diskstation/data/Soil_points/INT/FRED/chemsprops.FRED.rds")  
}
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 57190 Columns: 1164
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (54): X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X17, X1...
dbl (271): X1, X2, X30, X31, X32, X35, X36, X43, X44, X45, X46, X47, X48, X4...
lgl (839): X16, X20, X37, X38, X39, X42, X52, X53, X54, X55, X56, X57, X58, ...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(chemsprops.FRED)
[1] 14537    39
## [1] 14537  39

Global root traits (GRooT) database (compilation)

if(!exists("chemsprops.GROOT")){
  #Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 2)
  GROOT = read.csv("/mnt/diskstation/data/Soil_points/INT/GRooT/GRooTFullVersion.csv")
  ## 114,222 x 73
  #summary(GROOT$soilCarbon)
  #summary(!is.na(GROOT$soilCarbon))
  #summary(GROOT$soilOrganicMatter)
  #summary(GROOT$soilNitrogen)
  #summary(GROOT$soilpH)
  #summary(as.factor(GROOT$soilTexture))
  #lattice::xyplot(soilCarbon ~ soilpH, GROOT, par.settings = list(plot.symbol = list(col=scales::alpha("black", 0.6), fill=scales::alpha("red", 0.6), pch=21, cex=0.6)), scales = list(y=list(log=TRUE, equispaced.log=FALSE)), ylab="SOC", xlab="pH")
  GROOT$site_obsdate = as.Date(paste0(GROOT$year, "-01-01"), format="%Y-%m-%d")
  GROOT$hzn_top = 0
  GROOT$hzn_bot = 30
  GROOT.h.lst = c("locationID", "originalID", "site_obsdate", "decimalLongitud", "decimalLatitude", "SSL_classification_name", "GRooTID", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "soilTexture", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "soilCarbon", "oc_d", "c_tot", "soilNitrogen", "ph_kcl", "soilpH", "ph_cacl2", "soilCationExchangeCapacity", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = GROOT.h.lst[which(!GROOT.h.lst %in% names(GROOT))]
  if(length(x.na)>0){ for(i in x.na){ GROOT[,i] = NA } }
  chemsprops.GROOT = GROOT[,GROOT.h.lst]
  chemsprops.GROOT$source_db = "GROOT"
  chemsprops.GROOT$confidence_degree = 8
  chemsprops.GROOT$project_url = "https://groot-database.github.io/GRooT/"
  chemsprops.GROOT$citation_url = "https://dx.doi.org/10.1111/geb.13179"
  chemsprops.GROOT = complete.vars(chemsprops.GROOT, sel = c("soilCarbon", "soilpH"), coords = c("decimalLongitud", "decimalLatitude"))
  saveRDS.gz(chemsprops.GROOT, "/mnt/diskstation/data/Soil_points/INT/GRooT/chemsprops.GROOT.rds")
}
dim(chemsprops.GROOT)
[1] 16271    39
## [1] 16271  39

Global Soil Respiration DB

if(!exists("chemsprops.SRDB")){
  srdb = read.csv("/mnt/diskstation/data/Soil_points/INT/SRDB/srdb-data.csv")
  ## 10366 x 85
  srdb.h.lst = c("Site_ID", "Notes", "Study_midyear", "Longitude", "Latitude",  "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "tex_psd", "texture_lab", "Soil_clay", "Soil_silt", "Soil_sand", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "Soil_BD", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre", "source_db", "confidence_degree")
  #summary(srdb$Study_midyear)
  srdb$hzn_bot = ifelse(is.na(srdb$C_soildepth), 100, srdb$C_soildepth)
  srdb$hzn_top = 0
  #summary(srdb$Soil_clay)
  #summary(srdb$C_soilmineral)
  srdb$oc_d = signif(srdb$C_soilmineral / 1000 / (srdb$hzn_bot/100), 3)
  #summary(srdb$oc_d) 
  #summary(srdb$Soil_BD)
  srdb$oc = srdb$oc_d / srdb$Soil_BD
  #summary(srdb$oc)
  x.na = srdb.h.lst[which(!srdb.h.lst %in% names(srdb))]
  if(length(x.na)>0){ for(i in x.na){ srdb[,i] = NA } }
  chemsprops.SRDB = srdb[,srdb.h.lst]
  #plot(chemsprops.SRDB[,4:5])
  chemsprops.SRDB$source_db = "SRDB"
  chemsprops.SRDB$confidence_degree = 5
  chemsprops.SRDB$project_url = "https://github.com/bpbond/srdb/"
  chemsprops.SRDB$citation_url = "https://doi.org/10.5194/bg-7-1915-2010"
  chemsprops.SRDB = complete.vars(chemsprops.SRDB, sel = c("oc", "Soil_clay", "Soil_BD"), coords = c("Longitude", "Latitude"))
  saveRDS.gz(chemsprops.SRDB, "/mnt/diskstation/data/Soil_points/INT/SRDB/chemsprops.SRDB.rds")
}
dim(chemsprops.SRDB)
[1] 3337   39
## [1] 3337   39

SOils DAta Harmonization database (SoDaH)

if(!exists("chemsprops.SoDaH")){
  sodah.hor = vroom::vroom("/mnt/diskstation/data/Soil_points/INT/SoDaH/521_soils_data_harmonization_6e8416fa0c9a2c2872f21ba208e6a919.csv.gz")
  #head(sodah.hor)
  #summary(sodah.hor$coarse_frac)
  #summary(sodah.hor$lyr_soc)
  ## A critical review of the conventional SOC to SOM conversion factor
  ## https://doi.org/10.1016/j.geoderma.2010.02.003
  #summary(sodah.hor$lyr_som_WalkleyBlack/2)
  #summary(as.factor(sodah.hor$observation_date))
  sodah.hor$site_obsdate = as.integer(substr(sodah.hor$observation_date, 1, 4))
  sodah.hor$oc = ifelse(is.na(sodah.hor$lyr_soc), sodah.hor$lyr_som_WalkleyBlack/2 * 1.3, sodah.hor$lyr_soc) * 10 
  sodah.hor$n_tot = sodah.hor$lyr_n_tot * 10
  sodah.hor$oc_d = signif(sodah.hor$oc / 1000 * sodah.hor$bd_samp * 1000 * (100 - ifelse(is.na(sodah.hor$coarse_frac), 0, sodah.hor$coarse_frac))/100, 3)
  sodah.hor$site_key = paste(sodah.hor$network, sodah.hor$location_name, sep="_")
  sodah.hor$labsampnum = make.unique(paste(sodah.hor$network, sodah.hor$location_name, sodah.hor$L1, sep="_"))
  #summary(sodah.hor$oc_d)
  sodah.h.lst = c("site_key", "data_file", "observation_date", "long", "lat", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "layer_top", "layer_bot", "hzn", "profile_texture_class", "texture_lab", "clay", "silt", "sand", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl", "cec_sum", "cec_nh4", "ecec", "coarse_frac", "bd_samp", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre", "source_db", "confidence_degree")
  x.na = sodah.h.lst[which(!sodah.h.lst %in% names(sodah.hor))]
  if(length(x.na)>0){ for(i in x.na){ sodah.hor[,i] = NA } }
  chemsprops.SoDaH = sodah.hor[,sodah.h.lst]
  #plot(chemsprops.SoDaH[,4:5])
  chemsprops.SoDaH$source_db = "SoDaH"
  chemsprops.SoDaH$confidence_degree = 3
  chemsprops.SoDaH$project_url = "https://lter.github.io/som-website"
  chemsprops.SoDaH$citation_url = "https://doi.org/10.5194/essd-2020-195"
  chemsprops.SoDaH = complete.vars(chemsprops.SoDaH, sel = c("oc", "clay", "ph_h2o"), coords = c("long", "lat"))
  saveRDS.gz(chemsprops.SoDaH, "/mnt/diskstation/data/Soil_points/INT/SoDaH/chemsprops.SoDaH.rds")
}
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 293592 Columns: 157
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (62): google_dir, data_file, curator_PersonName, curator_organization, ...
dbl  (63): lat, long, elevation, map, mat, tx_start, aspect_deg, slope, npp,...
lgl  (31): depth_water, lit_c, lit_n, lit_p, lit_cn, lit_lig, bnpp_notes, L5...
date  (1): modification_date

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: NAs introduced by coercion
dim(chemsprops.SoDaH)
[1] 55760    39
## [1] 55760    39

ISRIC WISE harmonized soil profile data

if(!exists("chemsprops.WISE")){
  wise.site <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/WISE3_SITE.csv", stringsAsFactors = FALSE)
  #fao.90.lst = lapply(levels(as.factor(wise.site$FAO_90)), function(i){sumcor(wise.site, "FAO_90", "USCL", i)})
  #fao.90.uscl = do.call(rbind, fao.90.lst)
  #write.csv(fao.90.uscl, "/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/correlation_FAO.90_USCL.csv")
  wise.s.lst <- c("WISE3_id", "PITREF", "DATEYR", "LONDD", "LATDD", "USCL")
  wise.site$LONDD = as.numeric(wise.site$LONDD)
  wise.site$LATDD = as.numeric(wise.site$LATDD)
  wise.layer <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/WISE3_HORIZON.csv", stringsAsFactors = FALSE)
  wise.layer$ca_ext = signif(wise.layer$EXCA * 200, 4)
  wise.layer$mg_ext = signif(wise.layer$EXMG * 121, 3)
  wise.layer$na_ext = signif(wise.layer$EXNA * 230, 3)
  wise.layer$k_ext = signif(wise.layer$EXK * 391, 3)
  wise.layer$oc_d = signif(wise.layer$ORGC / 1000 * wise.layer$BULKDENS * 1000 * (100 - ifelse(is.na(wise.layer$GRAVEL), 0, wise.layer$GRAVEL))/100, 3)
  wise.h.lst <- c("WISE3_ID", "labsampnum", "layer_key", "HONU", "TOPDEP", "BOTDEP", "DESIG", "tex_psda", "texture_lab", "CLAY", "SILT", "SAND", "ORGC", "oc_d", "c_tot", "TOTN", "PHKCL", "PHH2O", "PHCACL2", "CECSOIL", "cec_nh4", "ecec", "GRAVEL" , "BULKDENS", "ca_ext", "mg_ext", "na_ext", "k_ext", "ECE", "ec_12pre")
  x.na = wise.h.lst[which(!wise.h.lst %in% names(wise.layer))]
  if(length(x.na)>0){ for(i in x.na){ wise.layer[,i] = NA } }
  chemsprops.WISE = merge(wise.site[,wise.s.lst], wise.layer[,wise.h.lst], by.x="WISE3_id", by.y="WISE3_ID")
  chemsprops.WISE$source_db = "ISRIC_WISE"
  chemsprops.WISE$confidence_degree = 4
  chemsprops.WISE$project_url = "http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x"  
  chemsprops.WISE$citation_url = "http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x"
  chemsprops.WISE = complete.vars(chemsprops.WISE, sel = c("ORGC","CLAY","PHH2O","CECSOIL","k_ext"), coords = c("LONDD", "LATDD"))
  saveRDS.gz(chemsprops.WISE, "/mnt/diskstation/data/Soil_points/INT/ISRIC_WISE/chemsprops.WISE.rds")
}
dim(chemsprops.WISE)
[1] 37443    39
## [1] 37443    39

GEMAS

if(!exists("chemsprops.GEMAS")){
  gemas.samples <- read.csv("/mnt/diskstation/data/Soil_points/EU/GEMAS/GEMAS.csv", stringsAsFactors = FALSE)
  ## GEMAS, agricultural soil, 0-20 cm, air dried, <2 mm, aqua regia Data from ACME, total C, TOC, CEC, ph_CaCl2
  gemas.samples$hzn_top = 0
  gemas.samples$hzn_bot = 20
  gemas.samples$oc = gemas.samples$TOC * 10
  #summary(gemas.samples$oc)
  gemas.samples$c_tot = gemas.samples$C_tot * 10
  gemas.samples$site_obsdate = 2009
  gemas.h.lst <- c("ID", "COUNRTY", "site_obsdate", "XCOO", "YCOO", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "TYPE", "tex_psda", "texture_lab", "clay", "silt", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "pH_CaCl2", "CEC", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = gemas.h.lst[which(!gemas.h.lst %in% names(gemas.samples))]
  if(length(x.na)>0){ for(i in x.na){ gemas.samples[,i] = NA } }
  chemsprops.GEMAS <- gemas.samples[,gemas.h.lst]
  chemsprops.GEMAS$source_db = "GEMAS_2009"
  chemsprops.GEMAS$confidence_degree = 2
  chemsprops.GEMAS$project_url = "http://gemas.geolba.ac.at/"
  chemsprops.GEMAS$citation_url = "https://doi.org/10.1016/j.apgeochem.2017.01.021"
  chemsprops.GEMAS = complete.vars(chemsprops.GEMAS, sel = c("oc","clay","pH_CaCl2"), coords = c("XCOO", "YCOO"))
  saveRDS.gz(chemsprops.GEMAS, "/mnt/diskstation/data/Soil_points/EU/GEMAS/chemsprops.GEMAS.rds")
}
dim(chemsprops.GEMAS)
[1] 4131   39
## [1] 4131   39

LUCAS soil

if(!exists("chemsprops.LUCAS")){
  lucas.samples <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/EU/LUCAS/LUCAS_TOPSOIL_v1.xlsx", sheet = 1)
  lucas.samples$site_obsdate <- "2009"
  #summary(lucas.samples$N)
  lucas.ro <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/EU/LUCAS/Romania.xlsx", sheet = 1)
  lucas.ro$site_obsdate <- "2012"
  names(lucas.samples)[which(!names(lucas.samples) %in% names(lucas.ro))]
  lucas.ro = plyr::rename(lucas.ro, replace=c("Soil.ID"="sample_ID", "GPS_X_LONG"="GPS_LONG", "GPS_Y_LAT"="GPS_LAT", "pHinH2O"="pH_in_H2O", "pHinCaCl2"="pH_in_CaCl"))
  lucas.bu <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/EU/LUCAS/Bulgaria.xlsx", sheet = 1)
  lucas.bu$site_obsdate <- "2012"
  names(lucas.samples)[which(!names(lucas.samples) %in% names(lucas.bu))]
  #lucas.ch <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/EU/LUCAS/LUCAS_2015_Topsoil_data_of_Switzerland-with-coordinates.xlsx_.xlsx", sheet = 1, startRow = 2)
  #lucas.ch = plyr::rename(lucas.ch, replace=c("Soil_ID"="sample_ID", "GPS_.LAT"="GPS_LAT", "pH.in.H2O"="pH_in_H2O", "pH.in.CaCl2"="pH_in_CaCl", "Calcium.carbonate/.g.kg–1"="CaCO3", "Silt/.g.kg–1"="silt", "Sand/.g.kg–1"="sand", "Clay/.g.kg–1"="clay", "Organic.carbon/.g.kg–1"="OC"))
  ## Double readings?
  lucas.t = plyr::rbind.fill(list(lucas.samples, lucas.ro, lucas.bu))
  lucas.h.lst <- c("POINT_ID", "usiteid", "site_obsdate", "GPS_LONG", "GPS_LAT", "SSL_classification_name", "sample_ID", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "tex_psda", "texture_lab", "clay", "silt", "sand", "OC", "oc_d", "c_tot", "N", "ph_kcl", "pH_in_H2O", "pH_in_CaCl", "CEC", "cec_nh4", "ecec", "coarse", "db_od", "ca_ext", "mg_ext", "na_ext", "K", "ec_satp", "ec_12pre")
  x.na = lucas.h.lst[which(!lucas.h.lst %in% names(lucas.t))]
  if(length(x.na)>0){ for(i in x.na){ lucas.t[,i] = NA } }
  chemsprops.LUCAS <- lucas.t[,lucas.h.lst]
  chemsprops.LUCAS$source_db = "LUCAS_2009"
  chemsprops.LUCAS$hzn_top <- 0
  chemsprops.LUCAS$hzn_bot <- 20
  chemsprops.LUCAS$OC = ifelse(as.numeric(chemsprops.LUCAS$OC)<0, 0, as.numeric(chemsprops.LUCAS$OC))
  chemsprops.LUCAS$confidence_degree = 2
  chemsprops.LUCAS$project_url = "https://esdac.jrc.ec.europa.eu/"
  chemsprops.LUCAS$citation_url = "https://doi.org/10.1111/ejss.12499"
  chemsprops.LUCAS = complete.vars(chemsprops.LUCAS, sel = c("OC","clay","pH_in_H2O"), coords = c("GPS_LONG", "GPS_LAT"))
  saveRDS.gz(chemsprops.LUCAS, "/mnt/diskstation/data/Soil_points/EU/LUCAS/chemsprops.LUCAS.rds")
}
Warning in ifelse(as.numeric(chemsprops.LUCAS$OC) < 0, 0,
as.numeric(chemsprops.LUCAS$OC)): NAs introduced by coercion
Warning in ifelse(as.numeric(chemsprops.LUCAS$OC) < 0, 0,
as.numeric(chemsprops.LUCAS$OC)): NAs introduced by coercion
dim(chemsprops.LUCAS)
[1] 21272    39
## [1] 21272    39
if(!exists("chemsprops.LUCAS2")){
  #lucas2015.samples <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/EU/LUCAS/LUCAS_Topsoil_2015_20200323.xlsx", sheet = 1)
  lucas2015.v = terra::vect("/mnt/diskstation/data/Soil_points/EU/LUCAS/LUCAS_Topsoil_2015_20200323.shp")
  #head(as.data.frame(lucas2015.xy))
  lucas2015.xy = dplyr::bind_cols(as.data.frame(lucas2015.v), geom(lucas2015.v))
  ## https://www.aqion.de/site/130
  ## 1 mS/m = 100 mS/cm | 1 dS/m = 1 mS/cm = 1 mS/m / 100
  lucas2015.xy$ec_satp = lucas2015.xy$EC / 100
  lucas2015.h.lst <- c("Point_ID", "LC0_Desc", "site_obsdate", "x", "y", "SSL_classification_name", "sample_ID", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "tex_psda", "texture_lab", "Clay", "Silt", "Sand", "OC", "oc_d", "c_tot", "N", "ph_kcl", "pH_H20", "pH_CaCl2", "CEC", "cec_nh4", "ecec", "coarse", "db_od", "ca_ext", "mg_ext", "na_ext", "K", "ec_satp", "ec_12pre")
  x.na = lucas2015.h.lst[which(!lucas2015.h.lst %in% names(lucas2015.xy))]
  if(length(x.na)>0){ for(i in x.na){ lucas2015.xy[,i] = NA } }
  chemsprops.LUCAS2 <- lucas2015.xy[,lucas2015.h.lst]
  chemsprops.LUCAS2$source_db = "LUCAS_2015"
  chemsprops.LUCAS2$hzn_top <- 0
  chemsprops.LUCAS2$hzn_bot <- 20
  chemsprops.LUCAS2$site_obsdate <- "2015"
  chemsprops.LUCAS2$confidence_degree = 2
  chemsprops.LUCAS2$project_url = "https://esdac.jrc.ec.europa.eu/"
  chemsprops.LUCAS2$citation_url = "https://doi.org/10.1111/ejss.12499"
  chemsprops.LUCAS2 = complete.vars(chemsprops.LUCAS2, sel = c("OC","Clay","pH_H20"), coords = c("x", "y"))
  saveRDS.gz(chemsprops.LUCAS2, "/mnt/diskstation/data/Soil_points/EU/LUCAS/chemsprops.LUCAS2.rds")
}
dim(chemsprops.LUCAS2)
[1] 21859    39
## [1] 21859    39
if(!exists("chemsprops.LUCAS3")){
  lucas2018.xy <- readxl::read_excel("/mnt/diskstation/data/Soil_points/EU/LUCAS/LUCAS-SOIL-2018.xls", sheet = 1)
  rem.LOD = function(x){ as.numeric(ifelse(x=="< LOD", 0, as.numeric(x)))}
  lucas2018.bd = read.csv("/mnt/diskstation/data/Soil_points/EU/LUCAS/BulkDensity_2018_final-2.csv")
  lucas2018.xy$BD = dplyr::left_join(lucas2018.xy, lucas2018.bd, join_by(POINTID == POINT_ID))$BD.0.20
  lucas2018.xy$BD = ifelse(lucas2018.xy$BD < 0.04 | lucas2018.xy$BD > 2.4, NA, lucas2018.xy$BD)
  ## 1 mS/m = 100 mS/cm | 1 dS/m = 1 mS/cm = 1 mS/m / 100
  #summary(!is.na(lucas2018.xy$`OC (20-30 cm)`))
  lucas2018.xy$pH_H2O = as.numeric(lucas2018.xy$pH_H2O)
  lucas2018.xy$OC = rem.LOD(lucas2018.xy$OC)
  #summary(lucas2018.xy$OC)
  lucas2018.xy$K = rem.LOD(lucas2018.xy$K)
  lucas2018.xy$oc_d = signif(lucas2018.xy$OC/1000 * lucas2018.xy$BD*1000, 3)
  #summary(lucas2018.xy$oc_d)
  lucas2018.xy$site_obsdate = as.Date(lucas2018.xy$SURVEY_DATE, format = "%d/%m/%y")
  lucas2018.xy$ec_satp = as.numeric(lucas2018.xy$EC) / 100
  lucas2018.h.lst <- c("Point_ID", "LC0_Desc", "site_obsdate", "TH_LONG", "TH_LAT", "SSL_classification_name", "sample_ID", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "tex_psda", "texture_lab", "Clay", "Silt", "Sand", "OC", "oc_d", "c_tot", "N", "ph_kcl", "pH_H20", "pH_CaCl2", "CEC", "cec_nh4", "ecec", "coarse", "BD", "ca_ext", "mg_ext", "na_ext", "K", "ec_satp", "ec_12pre")
  x.na = lucas2018.h.lst[which(!lucas2018.h.lst %in% names(lucas2018.xy))]
  if(length(x.na)>0){ for(i in x.na){ lucas2018.xy[,i] = NA } }
  chemsprops.LUCAS3 <- lucas2018.xy[,lucas2018.h.lst]
  chemsprops.LUCAS3$source_db = "LUCAS_2018"
  chemsprops.LUCAS3$hzn_top <- 0
  chemsprops.LUCAS3$hzn_bot <- 20
  chemsprops.LUCAS3$confidence_degree = 2
  chemsprops.LUCAS3$project_url = "https://esdac.jrc.ec.europa.eu/"
  chemsprops.LUCAS3$citation_url = "https://doi.org/10.1111/ejss.12499"
  chemsprops.LUCAS3 = complete.vars(chemsprops.LUCAS3, sel = c("OC","pH_H20","BD"), coords = c("TH_LONG", "TH_LAT"))
  saveRDS.gz(chemsprops.LUCAS3, "/mnt/diskstation/data/Soil_points/EU/LUCAS/chemsprops.LUCAS3.rds")
}
Warning: Expecting numeric in K15399 / R15399C11: got '< LOD'
Warning in ifelse(x == "< LOD", 0, as.numeric(x)): NAs introduced by coercion
Warning in ifelse(x == "< LOD", 0, as.numeric(x)): NAs introduced by coercion
Warning: NAs introduced by coercion
dim(chemsprops.LUCAS3)
[1] 18982    39
## [1] 18982    39

Mangrove forest soil DB

if(!exists("chemsprops.Mangroves")){
  mng.profs <- read.csv("/mnt/diskstation/data/Soil_points/INT/TNC_mangroves/mangrove_soc_database_v10_sites.csv", skip=1)
  mng.hors <- read.csv("/mnt/diskstation/data/Soil_points/INT/TNC_mangroves/mangrove_soc_database_v10_horizons.csv", skip=1)
  mng.2022 = read.csv("/mnt/diskstation/data/Soil_points/INT/TNC_mangroves/mangrove_C_2022_update.csv")
  mng.2022$CD_calc = mng.2022$OC /100 * as.numeric(mng.2022$BD_reported)
  mng.2022.f = plyr::rename(mng.2022, replace = list("Year_collected"="Year_sampled", "Longitude"="Longitude_Adjusted", "Latitude"="Latitude_Adjusted", "BD_reported"="BD_final", "OC"="OC_final"))
  mngALL = plyr::join(mng.hors, mng.profs, by=c("Site.name"))
  mngALL = plyr::rbind.fill(mngALL, mng.2022)
  mngALL$oc = mngALL$OC_final * 10
  mngALL$oc_d = mngALL$CD_calc * 1000
  mngALL$hzn_top = mngALL$U_depth * 100
  mngALL$hzn_bot = mngALL$L_depth * 100
  mngALL$wpg2 = 0
  #summary(mngALL$BD_reported) ## some very high values 3.26 t/m3
  mngALL$Year = ifelse(is.na(mngALL$Year_sampled), mngALL$Years_collected, mngALL$Year_sampled)
  mng.col = c("Site.name", "Site..", "Year", "Longitude_Adjusted", "Latitude_Adjusted", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence","hzn_top","hzn_bot","hzn_desgn", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "BD_reported", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")  
  x.na = mng.col[which(!mng.col %in% names(mngALL))]
  if(length(x.na)>0){ for(i in x.na){ mngALL[,i] = NA } }
  chemsprops.Mangroves = mngALL[,mng.col]
  chemsprops.Mangroves$source_db = "MangrovesDB"
  chemsprops.Mangroves$confidence_degree = 4
  chemsprops.Mangroves$project_url = "http://maps.oceanwealth.org/mangrove-restoration/"
  chemsprops.Mangroves$citation_url = "https://doi.org/10.1088/1748-9326/aabe1c"
  chemsprops.Mangroves = complete.vars(chemsprops.Mangroves, sel = c("oc","BD_reported"), coords = c("Longitude_Adjusted", "Latitude_Adjusted"))
  #head(chemsprops.Mangroves)
  mng.rm = chemsprops.Mangroves$Site.name[chemsprops.Mangroves$Site.name %in% mngALL$Site.name[grep("N", mngALL$OK.to.release., ignore.case = FALSE)]]
  saveRDS.gz(chemsprops.Mangroves, "/mnt/diskstation/data/Soil_points/INT/TNC_mangroves/chemsprops.Mangroves.rds")
}
Warning: NAs introduced by coercion
dim(chemsprops.Mangroves)
[1] 7987   39
## [1] 7987   39

CIFOR peatland points

Peatland soil measurements (points) from the literature described in:

  • Murdiyarso, D., Roman-Cuesta, R. M., Verchot, L. V., Herold, M., Gumbricht, T., Herold, N., & Martius, C. (2017). New map reveals more peat in the tropics (Vol. 189). CIFOR. https://doi.org/10.17528/cifor/006452
if(!exists("chemsprops.Peatlands")){
  cif.hors <- read.csv("/mnt/diskstation/data/Soil_points/INT/CIFOR_peatlands/SOC_literature_CIFOR_v1.csv")
  #summary(cif.hors$BD..g.cm..)
  #summary(cif.hors$SOC)
  #summary(cif.hors$TOC.content....)
  #summary(!is.na(cif.hors$modelling.x))
  cif.hors$oc = cif.hors$SOC * 10
  cif.hors$wpg2 = 0
  cif.hors$c_tot = cif.hors$TOC.content.... * 10
  cif.hors$oc_d = cif.hors$C.density..kg.C.m..
  cif.hors$site_obsdate = as.integer(substr(cif.hors$year, 1, 4))-1
  cif.hors$SSL_classification_name = ifelse(cif.hors$TAXNUSDA=="", paste(cif.hors$TAXOUSDA), paste(cif.hors$TAXNUSDA))
  #summary(as.factor(cif.hors$SSL_classification_name))
  cif.col = c("SOURCEID", "usiteid", "site_obsdate", "modelling.x", "modelling.y", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "Upper", "Lower", "hzn_desgn", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "BD..g.cm..", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = cif.col[which(!cif.col %in% names(cif.hors))]
  if(length(x.na)>0){ for(i in x.na){ cif.hors[,i] = NA } }
  chemsprops.Peatlands = cif.hors[,cif.col]
  chemsprops.Peatlands$source_db = "CIFOR"
  chemsprops.Peatlands$confidence_degree = 4
  chemsprops.Peatlands$project_url = "https://www.cifor.org/"
  chemsprops.Peatlands$citation_url = "https://doi.org/10.17528/cifor/006452"
  chemsprops.Peatlands = complete.vars(chemsprops.Peatlands, sel = c("oc", "BD..g.cm..", "SSL_classification_name", "c_tot"), coords = c("modelling.x", "modelling.y"))
  saveRDS.gz(chemsprops.Peatlands, "/mnt/diskstation/data/Soil_points/INT/CIFOR_peatlands/chemsprops.Peatlands.rds")
}
dim(chemsprops.Peatlands)
[1] 2968   39
## [1] 2968  39

LandPKS observations

LandPKS sites in 2024.
if(!exists("chemsprops.LandPKS")){
  pks = plyr::rbind.fill(
            vroom::vroom("/mnt/diskstation/data/Soil_points/INT/LandPKS/Export_LandInfo_Data_1.csv"), 
            vroom::vroom("/mnt/diskstation/data/Soil_points/INT/LandPKS/Export_LandInfo_Data_2.csv"))
  #str(pks)
  ## 55483 obs. of  52 variables
  #summary(as.factor(pks$BedrockDepth))
  pks.hor = data.frame(rock_fragments = 
                         c(pks$`RockFragments0-1cm`,
                           pks$`RockFragments1-10cm`,
                           pks$`RockFragments10-20cm`,
                           pks$`RockFragments20-50cm`,
                           pks$`RockFragments50-70cm`,
                           pks$`RockFragments70-100cm`,
                           pks$`RockFragments100-120cm`), 
                       tex_field = 
                         c(pks$`Texture0-1cm`, 
                           pks$`Texture1-10cm`, 
                           pks$`Texture10-20cm`, 
                           pks$`Texture20-50cm`, 
                           pks$`Texture50-70cm`, 
                           pks$`Texture70-100cm`, 
                           pks$`Texture100-120cm`))
  pks.hor$hzn_top = c(rep(0, nrow(pks)), 
                      rep(1, nrow(pks)), 
                      rep(10, nrow(pks)), 
                      rep(20, nrow(pks)), 
                      rep(50, nrow(pks)), 
                      rep(70, nrow(pks)), 
                      rep(100, nrow(pks)))
  pks.hor$hzn_bot = c(rep(1, nrow(pks)), 
                      rep(10, nrow(pks)), 
                      rep(20, nrow(pks)), 
                      rep(50, nrow(pks)), 
                      rep(70, nrow(pks)), 
                      rep(100, nrow(pks)), 
                      rep(120, nrow(pks)))
  pks.hor$longitude_decimal_degrees = rep(as.numeric(pks$Longitude), 7)
  pks.hor$latitude_decimal_degrees = rep(as.numeric(pks$Latitude), 7)
  pks.hor$depth_bedrock = rep(as.numeric(pks$BedrockDepth), 7)
  pks.hor$site_obsdate = rep(pks$DateCreated_GMT, 7)
  pks.hor$site_key = rep(pks$ID, 7)
  #summary(as.factor(pks.hor$tex_field))
  tex.tr = data.frame(tex_field=c("CLAY", "CLAY LOAM", "LOAM", "LOAMY SAND", "SAND", "SANDY CLAY", "SANDY CLAY LOAM", "SANDY LOAM", "SILT LOAM", "SILTY CLAY", "SILTY CLAY LOAM"), 
                      clay_tot_psa=c(62.4, 34.0, 19.0, 5.8, 3.3, 41.7, 27.0, 10.0, 13.1, 46.7, 34.0), 
                      silt_tot_psa=c(17.8, 34.0, 40.0, 12.0, 5.0, 6.7, 13.0, 25.0, 65.7, 46.7, 56.0), 
                      sand_tot_psa=c(19.8, 32.0, 41.0, 82.2, 91.7, 51.6, 60.0, 65.0, 21.2, 6.7, 10.0))
  pks.hor$clay_tot_psa = plyr::join(pks.hor["tex_field"], tex.tr)$clay_tot_psa
  pks.hor$silt_tot_psa = plyr::join(pks.hor["tex_field"], tex.tr)$silt_tot_psa
  pks.hor$sand_tot_psa = plyr::join(pks.hor["tex_field"], tex.tr)$sand_tot_psa
  #summary(as.factor(pks.hor$rock_fragments))
  pks.hor$wpg2 = ifelse(pks.hor$rock_fragments==">60%", 65, ifelse(pks.hor$rock_fragments=="35-60%", 47.5, ifelse(pks.hor$rock_fragments=="15-35%", 25, ifelse(pks.hor$rock_fragments=="1-15%" | pks.hor$rock_fragments=="0-15%", 5, ifelse(pks.hor$rock_fragments=="0-1%", 0.5, NA)))))
  #head(pks.hor)
  ## very shallow or very rocky soils
  pks.hor$oc = ifelse(pks.hor$depth_bedrock<10 | pks.hor$rock_fragments > 60, 0.5, NA)
  pks.col = c("site_key", "usiteid", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence","hzn_top","hzn_bot","hzn_desgn", "tex_field", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = pks.col[which(!pks.col %in% names(pks.hor))]
  if(length(x.na)>0){ for(i in x.na){ pks.hor[,i] = NA } }
  chemsprops.LandPKS = pks.hor[,pks.col]
  chemsprops.LandPKS$source_db = "LandPKS"
  chemsprops.LandPKS$confidence_degree = 8
  chemsprops.LandPKS$project_url = "http://portal.landpotential.org"
  chemsprops.LandPKS$citation_url = "https://doi.org/10.2489/jswc.68.1.5A"
  chemsprops.LandPKS = complete.vars(chemsprops.LandPKS, sel = c("clay_tot_psa","wpg2"), coords = c("longitude_decimal_degrees", "latitude_decimal_degrees"))
  #plot(chemsprops.LandPKS[,c("longitude_decimal_degrees","latitude_decimal_degrees")], pch="+")
  saveRDS.gz(chemsprops.LandPKS, "/mnt/diskstation/data/Soil_points/INT/LandPKS/chemsprops.LandPKS.rds")
}
Rows: 23973 Columns: 52
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (52): ID, Name, RecorderName, Latitude, Longitude, DateCreated_GMT, Land...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 31510 Columns: 52
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (46): Name, RecorderName, LandUse, GrazingAnimals, Flooding, Slope, Slo...
dbl   (4): ID, Latitude, Longitude, BedrockDepth
lgl   (1): Grazed
dttm  (1): DateCreated_GMT

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Joining by: tex_field
Joining by: tex_field
Joining by: tex_field
dim(chemsprops.LandPKS)
[1] 165044     39
## [1] 165044    39

EGRPR

Note: these are only historic data and it is not clear if the locations are synthetic or actual soil profiles.

if(!exists("chemsprops.EGRPR")){
  russ.HOR = read.csv("/mnt/diskstation/data/Soil_points/Russia/EGRPR/Russia_EGRPR_soil_pedons.csv")
  russ.HOR$SOURCEID = paste(russ.HOR$CardID, russ.HOR$SOIL_ID, sep="_")
  russ.HOR$wpg2 = russ.HOR$TEXTSTNS
  russ.HOR$SNDPPT <- russ.HOR$TEXTSAF + russ.HOR$TEXSCM
  russ.HOR$SLTPPT <- russ.HOR$TEXTSIC + russ.HOR$TEXTSIM + 0.8 * ifelse(is.na(russ.HOR$TEXTSIF), 0, russ.HOR$TEXTSIF)
  russ.HOR$CLYPPT <- russ.HOR$TEXTCL + 0.2 * ifelse(is.na(russ.HOR$TEXTSIF), 0, russ.HOR$TEXTSIF)
  ## Correct texture fractions:
  sumTex <- rowSums(russ.HOR[,c("SLTPPT","CLYPPT","SNDPPT")])
  russ.HOR$SNDPPT <- russ.HOR$SNDPPT / ((sumTex - russ.HOR$CLYPPT) /(100 - russ.HOR$CLYPPT))
  russ.HOR$SLTPPT <- russ.HOR$SLTPPT / ((sumTex - russ.HOR$CLYPPT) /(100 - russ.HOR$CLYPPT))
  ## Tyurin method usually
  russ.HOR$oc <- rowMeans(data.frame(x1=russ.HOR$CORG * 1.15 * 10, x2=russ.HOR$ORGMAT/2 * 1.3 * 10), na.rm=TRUE)
  russ.HOR$oc_d = signif(russ.HOR$oc / 1000 * russ.HOR$DVOL * 1000 * (100 - ifelse(is.na(russ.HOR$wpg2), 0, russ.HOR$wpg2))/100, 3)
  russ.HOR$n_tot <- russ.HOR$NTOT * 10
  russ.HOR$ca_ext = russ.HOR$EXCA * 200
  russ.HOR$mg_ext = russ.HOR$EXMG * 121
  russ.HOR$na_ext = russ.HOR$EXNA * 230
  russ.HOR$k_ext = russ.HOR$EXK * 391
  ## Sampling year not available but with high confidence <2000
  russ.HOR$site_obsdate = "1982"
  russ.sel.h <- c("SOURCEID", "SOIL_ID", "site_obsdate", "LONG", "LAT", "SSL_classification_name", "labsampnum", "layer_key", "HORNMB", "HORTOP", "HORBOT", "HISMMN", "tex_psda", "texture_lab", "CLYPPT", "SLTPPT", "SNDPPT", "oc", "oc_d", "c_tot", "NTOT", "PHSLT", "PHH2O", "ph_cacl2", "CECST", "cec_nh4", "ecec", "wpg2", "DVOL", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = russ.sel.h[which(!russ.sel.h %in% names(russ.HOR))]
  if(length(x.na)>0){ for(i in x.na){ russ.HOR[,i] = NA } }
  chemsprops.EGRPR = russ.HOR[,russ.sel.h]
  chemsprops.EGRPR$source_db = "Russia_EGRPR"
  chemsprops.EGRPR$confidence_degree = 5
  chemsprops.EGRPR$project_url = "http://egrpr.esoil.ru/"
  chemsprops.EGRPR$citation_url = "https://doi.org/10.19047/0136-1694-2016-86-115-123"
  chemsprops.EGRPR <- complete.vars(chemsprops.EGRPR, sel=c("oc", "CLYPPT"), coords = c("LONG", "LAT"))
  saveRDS.gz(chemsprops.EGRPR, "/mnt/diskstation/data/Soil_points/Russia/EGRPR/chemsprops.EGRPR.rds")
}
dim(chemsprops.EGRPR)
[1] 4506   39
## [1] 4506   39

Canada National Pedon DB

if(!exists("chemsprops.NPDB")){
  NPDB.nm = c("Horizons.csv", "Chemical.csv", "Physical.csv")
  NPDB.HOR = dplyr::left_join(plyr::join_all(lapply(paste0("/mnt/diskstation/data/Soil_points/Canada/NPDB/", NPDB.nm), read.csv), by = c("PEDON_ID", "LAYER_ID"), type = "full"), 
          read.csv("/mnt/diskstation/data/Soil_points/Canada/NPDB/Info.csv"), by="PEDON_ID")
  NPDB.HOR$tax = str_trim(tolower(paste(NPDB.HOR$CSSC_SBGRP, NPDB.HOR$CSSC_GTGRP, NPDB.HOR$CSSC_ORDER, sep=" ")))
  NPDB.tax = summary(as.factor(NPDB.HOR$tax), maxsum = length(levels(as.factor(NPDB.HOR$tax))))
  #write.csv(as.data.frame(NPDB.tax), "npdb_tax_summary.csv")
  can.cor = read.csv('./correlation/soil_type_correlation_Canada_NPDB.csv')
  NPDB.HOR$SSL_classification_name = dplyr::left_join(NPDB.HOR["tax"], can.cor[,c("tax","SSL_classification_name")], by="tax", multiple = "first")$SSL_classification_name
  #summary(as.factor(NPDB.HOR$SSL_classification_name))
  NPDB.HOR$HISMMN = paste0(NPDB.HOR$HZN_MAS, NPDB.HOR$HZN_SUF, NPDB.HOR$HZN_MOD)
  NPDB.HOR$oc = NPDB.HOR$CARB_ORG * 10
  #summary(NPDB.HOR$BULK_DEN)
  NPDB.HOR$oc_d = signif(NPDB.HOR$oc / 1000 * NPDB.HOR$BULK_DEN * 1000 * (100 - ifelse(is.na(NPDB.HOR$VC_SAND), 0, NPDB.HOR$VC_SAND))/100, 3)
  NPDB.HOR$ca_ext = NPDB.HOR$EXCH_CA * 200
  NPDB.HOR$mg_ext = NPDB.HOR$EXCH_MG * 121
  NPDB.HOR$na_ext = NPDB.HOR$EXCH_NA * 230
  NPDB.HOR$k_ext = NPDB.HOR$EXCH_K * 391
  npdb.sel.h = c("PEDON_ID", "usiteid", "CAL_YEAR", "DD_LONG_N", "DD_LAT_N", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "U_DEPTH", "L_DEPTH", "HISMMN", "tex_psda", "texture_lab", "T_CLAY", "T_SILT", "T_SAND", "oc", "oc_d", "c_tot", "N_TOTAL", "ph_kcl", "PH_H2O", "PH_CACL2", "CEC", "cec_nh4", "ecec", "VC_SAND", "BULK_DEN", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = npdb.sel.h[which(!npdb.sel.h %in% names(NPDB.HOR))]
  if(length(x.na)>0){ for(i in x.na){ NPDB.HOR[,i] = NA } }
  chemsprops.NPDB = NPDB.HOR[,npdb.sel.h]
  chemsprops.NPDB$source_db = "Canada_NPDB"
  chemsprops.NPDB$confidence_degree = 2
  chemsprops.NPDB$project_url = "https://open.canada.ca/data/en/"
  chemsprops.NPDB$citation_url = "https://open.canada.ca/data/en/dataset/6457fad6-b6f5-47a3-9bd1-ad14aea4b9e0"
  chemsprops.NPDB <- complete.vars(chemsprops.NPDB, sel=c("oc", "PH_H2O", "T_CLAY"), coords = c("DD_LONG_N", "DD_LAT_N"))
  #summary(as.factor(chemsprops.NPDB$CAL_YEAR))
  saveRDS.gz(chemsprops.NPDB, "/mnt/diskstation/data/Soil_points/Canada/NPDB/chemsprops.NPDB.rds")
}
dim(chemsprops.NPDB)
[1] 52021    39
## [1] 55809    39

Canadian upland forest soil profile and carbon stocks database

*Organic horizons have negative values, the first mineral soil horizon has a value of 0 cm, and other mineral soil horizons have positive values. This needs to be corrected before the values can be bind with other international sets.

if(!exists("chemsprops.CUFS")){
  ## Reading of the .dat file was tricky 
  cufs.HOR = read.csv("/mnt/diskstation/data/Soil_points/Canada/CUFSDB/PROFILES.csv", stringsAsFactors = FALSE)
  cufs.HOR$LOWER_HZN_LIMIT =cufs.HOR$UPPER_HZN_LIMIT + cufs.HOR$HZN_THICKNESS
  ## Correct depth (Canadian data can have negative depths for soil horizons):
  z.min.cufs <- ddply(cufs.HOR, .(LOCATION_ID), summarize, aggregated = min(UPPER_HZN_LIMIT, na.rm=TRUE))
  z.shift.cufs <- join(cufs.HOR["LOCATION_ID"], z.min.cufs, type="left")$aggregated
  ## fixed shift
  z.shift.cufs <- ifelse(z.shift.cufs>0, 0, z.shift.cufs)
  cufs.HOR$hzn_top <- cufs.HOR$UPPER_HZN_LIMIT - z.shift.cufs
  cufs.HOR$hzn_bot <- cufs.HOR$LOWER_HZN_LIMIT - z.shift.cufs
  cufs.SITE = read.csv("/mnt/diskstation/data/Soil_points/Canada/CUFSDB/SITES.csv", stringsAsFactors = FALSE)
  #str(cufs.SITE)
  can.tbl = read.csv("./correlation/soil_types_correlation_table_Canada.csv")
  cufs.SITE$SSL_classification_name = dplyr::left_join(cufs.SITE["GGSG"], can.tbl, by=c("GGSG"="CSSC_Class"))$TAXOUSDA
  cufs.HOR$longitude_decimal_degrees = plyr::join(cufs.HOR["LOCATION_ID"], cufs.SITE)$LONGITUDE
  cufs.HOR$latitude_decimal_degrees = plyr::join(cufs.HOR["LOCATION_ID"], cufs.SITE)$LATITUDE
  cufs.HOR$site_obsdate = plyr::join(cufs.HOR["LOCATION_ID"], cufs.SITE)$YEAR_SAMPLED
  cufs.HOR$usiteid = plyr::join(cufs.HOR["LOCATION_ID"], cufs.SITE)$RELEASE_SOURCE_SITEID
  #summary(cufs.HOR$ORG_CARB_PCT)
  #hist(cufs.HOR$ORG_CARB_PCT, breaks=45)
  cufs.HOR$oc = cufs.HOR$ORG_CARB_PCT*10
  #cufs.HOR$c_tot = cufs.HOR$oc + ifelse(is.na(cufs.HOR$CARBONATE_CARB_PCT), 0, cufs.HOR$CARBONATE_CARB_PCT*10)
  cufs.HOR$n_tot = cufs.HOR$TOT_NITRO_PCT*10
  cufs.HOR$ca_ext = cufs.HOR$EXCH_Ca * 200
  cufs.HOR$mg_ext = cufs.HOR$EXCH_Mg * 121
  cufs.HOR$na_ext = cufs.HOR$EXCH_Na * 230
  cufs.HOR$k_ext = cufs.HOR$EXCH_K * 391
  cufs.HOR$ph_cacl2 = cufs.HOR$pH
  cufs.HOR$ph_cacl2[!cufs.HOR$pH_H2O_CACL2=="CACL2"] = NA
  cufs.HOR$ph_h2o = cufs.HOR$pH
  cufs.HOR$ph_h2o[!cufs.HOR$pH_H2O_CACL2=="H2O"] = NA
  #summary(cufs.HOR$CF_VOL_PCT) ## is NA == 0??
  cufs.HOR$wpg2 = ifelse(cufs.HOR$CF_CORR_FACTOR==1, 0, cufs.HOR$CF_VOL_PCT)
  cufs.HOR$oc_d = signif(cufs.HOR$oc / 1000 * cufs.HOR$BULK_DENSITY * 1000 * (100 - ifelse(is.na(cufs.HOR$wpg2), 0, cufs.HOR$wpg2))/100, 3)
  cufs.sel.h = c("LOCATION_ID", "usiteid", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "labsampnum", "layer_key", "HZN_SEQ_NO", "hzn_top", "hzn_bot", "HORIZON", "TEXT_CLASS", "texture_lab", "CLAY_PCT", "SILT_PCT", "SAND_PCT", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "CEC_CALCULATED", "cec_nh4", "ecec", "wpg2", "BULK_DENSITY", "ca_ext", "mg_ext", "na_ext", "k_ext", "ELEC_COND", "ec_12pre")
  x.na = cufs.sel.h[which(!cufs.sel.h %in% names(cufs.HOR))]
  if(length(x.na)>0){ for(i in x.na){ cufs.HOR[,i] = NA } }
  chemsprops.CUFS = cufs.HOR[,cufs.sel.h]
  chemsprops.CUFS$source_db = "Canada_CUFS"
  chemsprops.CUFS$confidence_degree = 1
  chemsprops.CUFS$project_url = "https://cfs.nrcan.gc.ca/publications/centre/nofc"
  chemsprops.CUFS$citation_url = "https://doi.org/10.1002/ecy.2159"
  chemsprops.CUFS <- complete.vars(chemsprops.CUFS, sel=c("oc", "ph_h2o", "CLAY_PCT"))
  saveRDS.gz(chemsprops.CUFS, "/mnt/diskstation/data/Soil_points/Canada/CUFSDB/chemsprops.CUFS.rds")
}
Joining by: LOCATION_ID
Joining by: LOCATION_ID
Joining by: LOCATION_ID
Joining by: LOCATION_ID
Joining by: LOCATION_ID
dim(chemsprops.CUFS)
[1] 15873    39
## [1] 15873    39

Permafrost in subarctic Canada

  • Estop-Aragones, C.; Fisher, J.P.; Cooper, M.A.; Thierry, A.; Treharne, R.; Murton, J.B.; Phoenix, G.K.; Charman, D.J.; Williams, M.; Hartley, I.P. (2016). Bulk density, carbon and nitrogen content in soil profiles from permafrost in subarctic Canada. NERC Environmental Information Data Centre. https://doi.org/10.5285/efa2a84b-3505-4221-a7da-12af3cdc1952. Data download URL:
if(!exists("chemsprops.CAPERM")){
  caperm.HOR = vroom::vroom("/mnt/diskstation/data/Soil_points/Canada/NorthCanada/Bulk_density_CandNcontent_profiles_all_sites.csv")
  #measurements::conv_unit("-99 36 15.7", from = "deg_min_sec", to = "dec_deg")
  #caperm.HOR$longitude_decimal_degrees = as.numeric(measurements::conv_unit(paste0("-", gsub('\"W', '', gsub("'", ' ', iconv(caperm.HOR$Coordinates_West, "UTF-8", "UTF-8", sub=' ')), fixed = TRUE)), from = "deg_min_sec", to = "dec_deg"))
  caperm.HOR$longitude_decimal_degrees = as.numeric(measurements::conv_unit(paste0("-", caperm.HOR$Cordinates_West), from = "deg_min_sec", to = "dec_deg"))
  #caperm.HOR$latitude_decimal_degrees = as.numeric(measurements::conv_unit(gsub('\"N', '', gsub('o', '', gsub("'", ' ', iconv(caperm.HOR$Coordinates_North, "UTF-8", "UTF-8", sub=' '))), fixed = TRUE), from = "deg_min_sec", to = "dec_deg"))
  caperm.HOR$latitude_decimal_degrees = as.numeric(measurements::conv_unit(caperm.HOR$Cordinates_North, from = "deg_min_sec", to = "dec_deg"))
  #plot(caperm.HOR[,c("longitude_decimal_degrees","latitude_decimal_degrees")])
  caperm.HOR$site_obsdate = "2013"
  caperm.HOR$site_key = make.unique(caperm.HOR$Soil.core)
  #summary(as.factor(caperm.HOR$Soil_depth_cm))
  caperm.HOR$hzn_top = caperm.HOR$Soil_depth_cm-1
  caperm.HOR$hzn_bot = caperm.HOR$Soil_depth_cm+1
  caperm.HOR$bulk_density_oven_dry = caperm.HOR$Bulk_density_gdrysoil_cm3wetsoil
  caperm.HOR$organic_carbon = caperm.HOR$Ccontent_percentage_on_drymass * 10
  caperm.HOR$total_nitrogen_ncs = caperm.HOR$Ncontent_percentage_on_drymass * 10
  caperm.HOR$oc_d = signif(caperm.HOR$organic_carbon / 1000 * caperm.HOR$bulk_density_oven_dry * 1000, 3)
  x.na = col.names[which(!col.names %in% names(caperm.HOR))]
  if(length(x.na)>0){ for(i in x.na){ caperm.HOR[,i] = NA } }
  chemsprops.CAPERM = caperm.HOR[,col.names]
  chemsprops.CAPERM$source_db = "Canada_subarctic"
  chemsprops.CAPERM$confidence_degree = 2
  chemsprops.CAPERM$project_url = "http://arp.arctic.ac.uk/projects/carbon-cycling-linkages-permafrost-systems-cyclops/"
  chemsprops.CAPERM$citation_url = "https://doi.org/10.5285/efa2a84b-3505-4221-a7da-12af3cdc1952"
  chemsprops.CAPERM <- complete.vars(chemsprops.CAPERM, sel=c("organic_carbon", "total_nitrogen_ncs"))
  saveRDS.gz(chemsprops.CAPERM, "/mnt/diskstation/data/Soil_points/Canada/NorthCanada/chemsprops.CAPERM.rds")
}
Rows: 2931 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (6): Soil.core, Remarks, soil.type_Org_Min_Blend_Rock, Cordinates_North,...
dbl (4): Soil_depth_cm, Bulk_density_gdrysoil_cm3wetsoil, Ncontent_percentag...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(chemsprops.CAPERM)
[1] 1381   39
## [1] 1381   39

SOTER China soil profiles

if(!exists("chemsprops.CNSOTER")){
  sot.sites = read.csv("/mnt/diskstation/data/Soil_points/China/China_SOTERv1/CHINA_SOTERv1_Profile.csv")
  st.cor = read.csv('./correlation/soil_type_correlation_ISRIC_WISE.csv')
  sot.sites$SSL_classification_name = paste0( dplyr::left_join(sot.sites["CLAF"], st.cor, by=c("CLAF"="FAO_90"), multiple = "first")$Class_1, " / ",
                       dplyr::left_join(sot.sites["CLAF"], st.cor, by=c("CLAF"="FAO_90"), multiple = "first")$Class_2)           
  #summary(as.factor(sot.sites$SSL_classification_name))
  sot.horizons = read.csv("/mnt/diskstation/data/Soil_points/China/China_SOTERv1/CHINA_SOTERv1_Horizon.csv")
  sot.HOR = plyr::join_all(list(sot.sites, sot.horizons), type = "full")
  sot.HOR$oc = sot.HOR$SOCA * 10
  sot.HOR$ca_ext = sot.HOR$EXCA * 200
  sot.HOR$mg_ext = sot.HOR$EXMG * 121
  sot.HOR$na_ext = sot.HOR$EXNA * 230
  sot.HOR$k_ext = sot.HOR$EXCK * 391
  ## upper depth missing needs to be derived manually
  sot.HOR$hzn_top = NA
  sot.HOR$hzn_top[2:nrow(sot.HOR)] <- sot.HOR$HBDE[1:(nrow(sot.HOR)-1)]
  sot.HOR$hzn_top <- ifelse(sot.HOR$hzn_top > sot.HOR$HBDE, 0, sot.HOR$hzn_top)
  sot.HOR$hzn_top <- ifelse(sot.HOR$HONU==1 & is.na(sot.HOR$hzn_top), 0, sot.HOR$hzn_top)
  sot.HOR$oc_d = signif(sot.HOR$oc / 1000 * sot.HOR$BULK * 1000 * (100 - ifelse(is.na(sot.HOR$SDVC), 0, sot.HOR$SDVC))/100, 3)
  sot.sel.h = c("PRID", "PDID", "SAYR", "LNGI", "LATI", "SSL_classification_name", "labsampnum", "layer_key", "HONU", "hzn_top",  "HBDE", "HODE", "PSCL", "texture_lab", "CLPC", "STPC", "SDTO", "oc", "oc_d", "TOTC", "TOTN", "PHKC", "PHAQ", "ph_cacl2", "CECS", "cec_nh4", "ecec", "SDVC", "BULK", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = sot.sel.h[which(!sot.sel.h %in% names(sot.HOR))]
  if(length(x.na)>0){ for(i in x.na){ sot.HOR[,i] = NA } }
  chemsprops.CNSOT = sot.HOR[,sot.sel.h]
  chemsprops.CNSOT$source_db = "China_SOTER"
  chemsprops.CNSOT$confidence_degree = 8
  chemsprops.CNSOT$project_url = "https://www.isric.org/explore/soter"
  chemsprops.CNSOT$citation_url = "https://isric.org/sites/default/files/isric_report_2008_06.pdf"
  chemsprops.CNSOT <- complete.vars(chemsprops.CNSOT, sel=c("TOTC", "PHAQ", "CLPC"), coords = c("LNGI", "LATI"))
  saveRDS.gz(chemsprops.CNSOT, "/mnt/diskstation/data/Soil_points/China/China_SOTERv1/chemsprops.CNSOT.rds")
}
Joining by: PRID, INFR
dim(chemsprops.CNSOT)
[1] 5115   39
## [1] 5115   39

SISLAC

  • Díaz-Guadarrama, S., Varón-Ramírez, V. M., Lizarazo, I., Guevara, M., Angelini, M., Araujo-Carrillo, G. A., … & Rubiano, Y. (2024). Improving the Latin America and Caribbean Soil Information System (SISLAC) database enhances its usability and scalability. Earth System Science Data, 16(3), 1229-1246. https://doi.org/10.5194/essd-16-1229-2024
if(!exists("chemsprops.SISLAC")){
  sis.hor = read.csv("/mnt/diskstation/data/Soil_points/SA/SISLAC/sislac_v2.csv", stringsAsFactors = FALSE)
  #str(sis.hor)
  #summary(as.factor(sis.hor$source))
  ## Remove some redundant records:
  sis.hor = sis.hor[!sis.hor$source %in% c("WoSIS July 2016 Snapshot", "CHLSOC: the Chilean Soil Organic Carbon database", "Harmonized soil database of Ecuador (HESD)", "México Serie-2"),]
  #dim(sis.hor)
  ## 96421 rows
  ## SOC for Uruguay do not match the original soil profile data (see e.g. http://www.mgap.gub.uy/sites/default/files/multimedia/skmbt_c45111090914030.pdf)
  ## compare with:
  #sis.hor[sis.hor$perfil_id=="23861",]
  #summary(sis.hor$organic_carbon)
  ## Some erratic values with SOC % > 100%!
  sis.hor$oc = ifelse(sis.hor$organic_carbon > 80, NA, sis.hor$organic_carbon * 10)
  #ggplot(sis.hor, aes(oc+1)) + geom_histogram() + scale_x_log10()
  #summary(sis.hor$bulk_density)
  #summary(sis.hor$coarse_fragments)
  sis.hor$oc_d = signif(sis.hor$oc / 1000 * sis.hor$bulk_density * 1000 * (100 - ifelse(is.na(sis.hor$coarse_fragments), 0, sis.hor$coarse_fragments))/100, 3)
  #summary(sis.hor$oc_d)
  sis.hor$site_obsdate = format(as.Date(sis.hor$fecha, format="%d/%m/%Y"), "%Y-%m-%d")
  sis.hor$n_tot = sis.hor$n * 10
  #summary(sis.hor$k)
  sis.hor$ca_ext = sis.hor$ca * 200
  sis.hor$mg_ext = sis.hor$mg * 121
  sis.hor$k_ext = sis.hor$k * 391
  #summary(as.factor(substr(sis.hor$site_obsdate, 1, 4)))
  ## 71407 thousand with year 1900 / many with 1905? Typos?
  sis.sel.h = c("profile_id", "profile_identifier", "site_obsdate", "longitude", "latitude", "SSL_classification_name", "layer_identifier", "layer_id", "layer_sequence", "top", "bottom", "designation", "textura", "texture_lab", "clay", "silt", "sand", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "coarse_fragments", "analitico_densidad_aparente", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = sis.sel.h[which(!sis.sel.h %in% names(sis.hor))]
  if(length(x.na)>0){ for(i in x.na){ sis.hor[,i] = NA } }
  chemsprops.SISLAC = sis.hor[,sis.sel.h]
  chemsprops.SISLAC$source_db = "SISLAC"
  chemsprops.SISLAC$confidence_degree = 6
  chemsprops.SISLAC$project_url = "https://github.com/DiazSergio/Revised-SISLAC-Database-Version1.2"
  chemsprops.SISLAC$citation_url = "https://doi.org/10.5194/essd-16-1229-2024"
  chemsprops.SISLAC <- complete.vars(chemsprops.SISLAC, sel=c("oc","ph","clay"), coords = c("longitude", "latitude"))
  saveRDS.gz(chemsprops.SISLAC, "/mnt/diskstation/data/Soil_points/SA/SISLAC/chemsprops.SISLAC.rds")
}
dim(chemsprops.SISLAC)
[1] 92121    39
## [1] 92121    39

FEBR

if(!exists("chemsprops.FEBR")){
  #remotes::install_github(repo = "laboratorio-de-pedometria/febr-package")
  #library(febr)
  ## download up-to-date copy of data
  #febr.lab = febr::layer(dataset = "all", variable="all")
  #febr.lab = febr::observation(dataset = "all")
  #febr.md = febr::metadata(data.set = c("ctb0003", "ctb0002"))
  febr.hor = read.csv(gzfile("/mnt/diskstation/data/Soil_points/Brasil/FEBR/febr-superconjunto.txt.gz"), stringsAsFactors = FALSE, dec = ",", sep = ";")
  ## Rows: 50470 Columns: 40
  #head(febr.hor)
  #summary(febr.hor$coord_x)
  #summary(as.factor(febr.hor$coord_fonte))
  #summary(as.numeric(febr.hor$carbono))
  #summary(as.numeric(febr.hor$ph))
  #summary(as.numeric(febr.hor$dsi))
  #summary(febr.hor$dsi) ## bulk density of total soil
  febr.hor$organic_carbon = as.numeric(febr.hor$carbono)
  febr.hor$bulk_density_oven_dry = as.numeric(febr.hor$dsi)
  febr.hor$ph_h2o = ifelse(febr.hor$ph<30|febr.hor$ph>90, NA, febr.hor$ph/10)
  febr.hor$clay_tot_psa = febr.hor$argila /10
  febr.hor$sand_tot_psa = febr.hor$areia /10
  febr.hor$silt_tot_psa = febr.hor$silte /10
  febr.hor$wpg2 = (1000-febr.hor$terrafina)/10
  febr.hor$oc_d = signif(febr.hor$organic_carbon / 1000 * febr.hor$bulk_density_oven_dry * 1000 * (100 - ifelse(is.na(febr.hor$wpg2), 0, febr.hor$wpg2))/100, 3)
  #summary(febr.hor$oc_d)
  #br.sm = summary(as.factor(febr.hor$taxon_sibcs))
  #br.tax = as.data.frame(br.sm)
  #br.tax$levels = attr(br.sm, "names")
  #write.csv(br.tax, "/mnt/diskstation/data/Soil_points/Brasil/FEBR/febr_taxon_sibcs.csv")
  febr.tax = read.csv("./correlation/soil_type_correlation_BR_FEBR.csv")
  febr.hor$SSL_classification_name = dplyr::left_join(febr.hor["taxon_sibcs"], febr.tax, by=c("taxon_sibcs"="levels"), multiple = "first")$SSL_classification_name
  febr.hor$SSL_classification_name = ifelse(is.na(febr.hor$taxon_st), febr.hor$SSL_classification_name, febr.hor$taxon_st)
  #summary(as.factor(febr.hor$SSL_classification_name))
  febr.sel.h <- c("observacao_id", "usiteid", "observacao_data", "coord_x", "coord_y", "SSL_classification_name", "sisb_id", "layer_key", "camada_id", "profund_sup", "profund_inf", "camada_nome", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "organic_carbon", "oc_d", "c_tot", "total_carbon_ncs", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "bulk_density_oven_dry", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = febr.sel.h[which(!febr.sel.h %in% names(febr.hor))]
  if(length(x.na)>0){ for(i in x.na){ febr.hor[,i] = NA } }
  chemsprops.FEBR = febr.hor[,febr.sel.h]
  chemsprops.FEBR$source_db = "FEBR"
  chemsprops.FEBR$confidence_degree = 4
  chemsprops.FEBR$project_url = "http://www.ufsm.br/febr/"
  chemsprops.FEBR$citation_url = "https://doi.org/10.1590/1678-992x-2017-0430"
  chemsprops.FEBR <- complete.vars(chemsprops.FEBR, sel=c("organic_carbon", "ph_h2o", "clay_tot_psa", "bulk_density_oven_dry"), coords = c("coord_x", "coord_y"))
  saveRDS.gz(chemsprops.FEBR, "/mnt/diskstation/data/Soil_points/Brasil/FEBR/chemsprops.FEBR.rds")
}
dim(chemsprops.FEBR)
[1] 24420    39
## [1] 24420    39

PRONASOLOS

if(!exists("chemsprops.PRONASOLOS")){
  pronas.hor = as.data.frame(sf::read_sf("/mnt/diskstation/data/Soil_points/Brasil/Pronasolos/Perfis_PronaSolos_20201202v2.shp"))
  ## 34,464 rows
  #head(pronas.hor)
  #summary(as.numeric(pronas.hor$carbono_or))
  #summary(as.numeric(pronas.hor$densidade_))
  #summary(as.numeric(pronas.hor$argila))
  #summary(as.numeric(pronas.hor$cascalho))
  #summary(as.numeric(pronas.hor$ph_h2o))
  #summary(as.numeric(pronas.hor$complexo_2))
  ## A lot of potential errors / typos e.g. very high values and 0 values for soil pH
  #pronas.hor$data_colet[1:50]
  pronas.in.name = c("sigla", "codigo_pon", "data_colet", "gcs_latitu", "gcs_longit", "simbolo_ho", "profundida", 
                     "profundi_1", "cascalho", "areia_tota", "silte", "argila", "densidade_", "ph_h2o", "ph_kcl", 
                     "complexo_s", "complexo_1", "complexo_2", "complexo_3", "valor_s", "carbono_or", "nitrogenio",
                     "condutivid", "classe_tex")
  #pronas.in.name[which(!pronas.in.name %in% names(pronas.hor))]
  pronas.x = as.data.frame(pronas.hor[,pronas.in.name])
  pronas.out.name = c("site_key", "usiteid", "site_obsdate", "latitude_decimal_degrees", "longitude_decimal_degrees",
                      "hzn_desgn", "hzn_bot", "hzn_top", "total_frag_wt_pct_gt_2_mm_ws", "sand_total", "silt_total", 
                      "clay_total", "bulk_density_oven_dry", "ph_h2o", "ph_kcl", "ca_ext",
                      "mg_ext", "k_ext", "na_ext", "sum_of_cations_cec_pH_8_2", "organic_carbon", "total_nitrogen_ncs", "ec_water_extractable", "texture_description")
  ## translate values
  pronas.fun.lst = as.list(rep("as.numeric(x)*1", length(pronas.in.name)))
  pronas.fun.lst[[which(pronas.in.name=="sigla")]] = "paste(x)"
  pronas.fun.lst[[which(pronas.in.name=="codigo_pon")]] = "paste(x)"
  pronas.fun.lst[[which(pronas.in.name=="data_colet")]] = "paste(x)"
  pronas.fun.lst[[which(pronas.in.name=="simbolo_ho")]] = "paste(x)"
  pronas.fun.lst[[which(pronas.in.name=="classe_tex")]] = "paste(x)"
  pronas.fun.lst[[which(pronas.in.name=="complexo_s")]] = "as.numeric(x)*200"
  pronas.fun.lst[[which(pronas.in.name=="complexo_1")]] = "as.numeric(x)*121"
  pronas.fun.lst[[which(pronas.in.name=="complexo_2")]] = "as.numeric(x)*391"
  pronas.fun.lst[[which(pronas.in.name=="complexo_3")]] = "as.numeric(x)*230"
  pronas.fun.lst[[which(pronas.in.name=="areia_tota")]] = "round(as.numeric(x)/10, 1)"
  pronas.fun.lst[[which(pronas.in.name=="silte")]] = "round(as.numeric(x)/10, 1)"
  pronas.fun.lst[[which(pronas.in.name=="argila")]] = "round(as.numeric(x)/10, 1)"
  ## save translation rules:
  #write.csv(data.frame(pronas.in.name, pronas.out.name, unlist(pronas.fun.lst)), "pronas_soilab_transvalues.csv")
  pronas.soil = transvalues(pronas.x, pronas.out.name, pronas.in.name, pronas.fun.lst)
  ## a lot of NA's
  ## oxidation with 0.067 M K2Cr2O7, Tiurim method -> Walkley-Black method
  pronas.soil$organic_carbon = 1.3 * pronas.soil$organic_carbon
  #summary(pronas.soil$organic_carbon)
  pronas.soil$bulk_density_oven_dry <- ifelse(pronas.soil$bulk_density_oven_dry < 0.05, NA, pronas.soil$bulk_density_oven_dry)
  pronas.soil$total_frag_wt_pct_gt_2_mm_ws <- ifelse(pronas.soil$total_frag_wt_pct_gt_2_mm_ws < 0 | pronas.soil$total_frag_wt_pct_gt_2_mm_ws > 100, NA, pronas.soil$total_frag_wt_pct_gt_2_mm_ws)
  #summary(pronas.soil$bulk_density_oven_dry)
  pronas.soil$oc_d = signif(pronas.soil$organic_carbon * pronas.soil$bulk_density_oven_dry * (100 - ifelse(is.na(pronas.soil$total_frag_wt_pct_gt_2_mm_ws), 0, pronas.soil$total_frag_wt_pct_gt_2_mm_ws))/100, 3)
  #summary(pronas.soil$oc_d)
  x.na = col.names[which(!col.names %in% names(pronas.soil))]
  if(length(x.na)>0){ for(i in x.na){ pronas.soil[,i] = NA } }
  chemsprops.PRONASOLOS = pronas.soil[,col.names]
  chemsprops.PRONASOLOS$source_db = "PRONASOLOS"
  chemsprops.PRONASOLOS$confidence_degree = 2
  chemsprops.PRONASOLOS$project_url = "https://geoportal.cprm.gov.br/pronasolos/"
  chemsprops.PRONASOLOS$citation_url = "https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1135056"
  chemsprops.PRONASOLOS <- complete.vars(chemsprops.PRONASOLOS, sel=c("organic_carbon","ph_h2o","clay_total"))
  saveRDS.gz(chemsprops.PRONASOLOS, "/mnt/diskstation/data/Soil_points/Brasil/Pronasolos/chemsprops.PRONASOLOS.rds")
}
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
dim(chemsprops.PRONASOLOS)
[1] 32708    39
## [1] 32708    39

Guatemala Soil Organic Carbon Database (GTMSOC)

if(!exists("chemsprops.Guatemala")){
  gua.df = vroom::vroom("/mnt/diskstation/data/Soil_points/Guatemala/GTMSOCBD.csv")
  ## Rows: 910 Columns: 12
  #str(gua.site)
  #summary(as.factor(gua.site$SOC_Method))
  ## measured using wet-oxidation method (Walley-Black)
  gua.df$oc = gua.df$SOC * 1.3
  ## Values are about 50-100% higher than in other countries
  #summary(gua.df$CF)
  gua.df$wpg2 = ifelse(is.na(gua.df$CF), 0, gua.df$CF)
  gua.df$oc_d = signif(gua.df$oc / 1000 * gua.df$BD * 1000 * (100 - gua.df$wpg2)/100, 3)
  gua.df$LIMSUP = 0; gua.df$LIMINF = 30
  #summary(gua.df$oc_d)
  gua.sel.h = c("ID", "upedonid", "Date", "Longitude", "Latitude", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "LIMSUP", "LIMINF", "hzn_desgn", "texture_description", "texture_lab", "clay_total", "silt_total", "sand_total",  
              "oc", "oc_d", "total_carbon_ncs", "total_nitrogen_ncs", 
              "ph_kcl", "ph_h2o", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "cec_nh4_ph_7", "ecec_base_plus_aluminum", 
              "CF", "BD", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = gua.sel.h[which(!gua.sel.h %in% names(gua.df))]
  if(length(x.na)>0){ for(i in x.na){ gua.df[,i] = NA } }
  chemsprops.Guatemala = gua.df[,gua.sel.h]
  chemsprops.Guatemala$source_db = "Guatemala_GTMSOC"
  chemsprops.Guatemala$confidence_degree = 2
  chemsprops.Guatemala$project_url = "https://doi.org/10.6073/pasta/8dd15238c604c3ac75daf985548bd05c"
  chemsprops.Guatemala$citation_url = "https://doi.org/10.1111/ejss.13450"
  chemsprops.Guatemala <- complete.vars(chemsprops.Guatemala, sel=c("oc","BD"), coords = c("Longitude", "Latitude"))
  saveRDS.gz(chemsprops.Guatemala, "/mnt/diskstation/data/Soil_points/Guatemala/chemsprops.Guatemala.rds")
}
Rows: 910 Columns: 12
── Column specification ────────────────────────────────────────────────────────
Delimiter: ";"
chr (5): ID, SOC_Method, BD_Method, Data_Source, Primary_Information
dbl (6): Longitude, Latitude, SOC, BD, CF, Date
lgl (1): CF_Method

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(chemsprops.Guatemala)
[1] 910  39
## [1] 910   39

Harmonized Soil Database of Ecuador

  • Armas, D.I., M. Guevara, F. Bezares, R. Vargas, P. Durante, V.H. Osorio, W.A. Jimenez, and C. Oyonarte. (2022). Harmonized Soil Database of Ecuador 2021 ver 3. Environmental Data Initiative. https://doi.org/10.6073/pasta/1560e803953c839e7aedef78ff7d3f6c (Accessed 2024-11-24).
  • Armas, D., Guevara, M., Bezares, F., Vargas, R., Durante, P., Osorio, V., Jiménez, W., and Oyonarte, C. (2023). Harmonized Soil Database of Ecuador (HESD): data from 2009 to 2015, Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023
if(!exists("chemsprops.Ecuador")){
  ecu.site = vroom::vroom("/mnt/diskstation/data/Soil_points/Ecuador/Harmonized_Soil_Database_of_Ecuador_profile_v0.2EDI.csv")
  #summary(ecu.site$CORX)
  ecu.xy = terra::vect(ecu.site[,c("CORX","CORY")], geom=c("CORX", "CORY"), crs="EPSG:32717")
  ecu.ll = terra::project(ecu.xy, "EPSG:4326")
  ecu.site$longitude_decimal_degrees = geom(ecu.ll)[,"x"]
  ecu.site$latitude_decimal_degrees = geom(ecu.ll)[,"y"]
  #plot(ecu.site[,c("longitude_decimal_degrees","latitude_decimal_degrees")], pch="+", asp=1)
  ecu.site$site_obsdate = as.Date(ecu.site$FEMU, format="%d/%m/%y")
  ecu.site$site_obsdate[nchar(ecu.site$FEMU)>8] <- as.Date(ecu.site$FEMU, format="%d/%m/%Y")[nchar(ecu.site$FEMU)>8]
  ##summary(ecu.site$site_obsdate)
  ecu.hor = vroom::vroom("/mnt/diskstation/data/Soil_points/Ecuador/Harmonized_Soil_Database_of_Ecuador_horizon_v0.2.csv")
  ecu.df = dplyr::left_join(ecu.hor, ecu.site, by="ID_PER", multiple="first")
  ## measured using wet-oxidation method (Walley-Black)
  ecu.df$oc = ecu.df$CO * 1.3
  #summary(ecu.df$oc)
  #summary(ecu.df$DA)
  #summary(ecu.df$KDIS) # centimolePerKilogram
  ecu.df$ca_ext = ecu.df$CADIS * 200
  ecu.df$mg_ext = ecu.df$MGDIS * 121
  ecu.df$na_ext = ecu.df$NACC * 230
  ecu.df$k_ext = ecu.df$KDIS * 391
  #summary(as.factor(ecu.df$FR_CL))
  ecu.df$wpg2 = ifelse(ecu.df$FR_CL=="0-2", 1, 
                       ifelse(ecu.df$FR_CL==" 02-05", 3.5, 
                       ifelse(ecu.df$FR_CL==" 05-15", 10, 
                       ifelse(ecu.df$FR_CL=="15-40", 27.5, 
                       ifelse(ecu.df$FR_CL=="40-80", 60, 
                       ifelse(ecu.df$FR_CL=="> 80", 90, 0))))))
  ecu.df$wpg2 = ifelse(is.na(ecu.df$wpg2), 0, ecu.df$wpg2)
  #summary(ecu.df$wpg2)
  ecu.df$oc_d = signif(ecu.df$oc / 1000 * ecu.df$DA * 1000 * (100 - ecu.df$wpg2)/100, 3)
  #summary(ecu.df$oc_d)
  ecu.sel.h = c("ID_PER", "ID_NAC", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "STSG", "ID_HOR", "layer_key", "ORDHOR", "LIMSUP", "LIMINF", "HMOR", "texture_description", "texture_lab", "ARCILLA", "LIMO", "ARENA", "oc", "oc_d", "c_tot", "NTOT", "ph_kcl", "PHAQ", "ph_cacl2", "SBCC", "cec_nh4", "ecec", "wpg2", "DA", "ca_ext", "mg_ext", "na_ext", "k_ext", "CESS", "ec_12pre")
  x.na = ecu.sel.h[which(!ecu.sel.h %in% names(ecu.df))]
  if(length(x.na)>0){ for(i in x.na){ ecu.df[,i] = NA } }
  chemsprops.Ecuador = ecu.df[,ecu.sel.h]
  chemsprops.Ecuador$source_db = "Ecuador_HESD"
  chemsprops.Ecuador$confidence_degree = 2
  chemsprops.Ecuador$project_url = "https://doi.org/10.6073/pasta/1560e803953c839e7aedef78ff7d3f6c"
  chemsprops.Ecuador$citation_url = "https://doi.org/10.5194/essd-15-431-2023"
  chemsprops.Ecuador <- complete.vars(chemsprops.Ecuador, sel=c("oc","PHAQ","ARCILLA","DA"))
  saveRDS.gz(chemsprops.Ecuador, "/mnt/diskstation/data/Soil_points/Ecuador/chemsprops.Ecuador.rds")
}
Rows: 13542 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (17): ID_NAC, COLP, STSG, STGG, STOD, RTS, RHS, LITO, GEOF, TUSO, TVEG, ...
dbl  (7): ID_PER, CORX, CORY, ALT, PRES, PEND, FRGG

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
Rows: 51673 Columns: 56
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (4): Hmor, MSHOR, SUBHOR, FR_CL
dbl (40): ID_PER, ID_HOR, CORX, CORY, ORDHOR, DISHOR, LIMSUP, LIMINF, ROOTS,...
lgl (12): pHSS, CESS, NASS, KSS, CASS, MGSS, SBSS, CARSS, SULSS, CLSS, PSI, RAS

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
dim(chemsprops.Ecuador)
[1] 30188    39
## [1] 30188    39

Mexico (INEGI) series I and II

if(!exists("chemsprops.MexicoINEGI")){
  mex.xy = terra::vect("/mnt/diskstation/data/Soil_points/Mexico/INEGI/perfiles_serieii.shp", crs="EPSG:6362")
  mex.ll <- terra::project(mex.xy, "EPSG:4326")
  #plot(mex.ll)
  mex.df = as.data.frame(mex.xy)
  mex.df$site_key = sapply(mex.df$ID_PERFIL, function(i){strsplit(i, "-")}[[1]][1])
  ## 4428
  mex.df$longitude_decimal_degrees = geom(mex.ll)[,"x"]
  mex.df$latitude_decimal_degrees = geom(mex.ll)[,"y"]
  ##summary(mex.df$CO) ## Carbono orgánico, método de Walkley y Black
  mex.df$oc = mex.df$CO * 10 * 1.3
  #summary(mex.df$K)
  mex.df$ca_ext = mex.df$CA * 200
  mex.df$mg_ext = mex.df$MG * 121
  mex.df$na_ext = mex.df$`NA` * 230
  mex.df$k_ext = mex.df$K * 391
  mex.df$site_obsdate = format(as.Date(mex.df$FECHA, format="%d/%m/%Y"), "%Y-%m-%d")
  ## pH del horizonte, método del potenciómetro, relación con agua 1:1
  mex.sel.h = c("site_key", "IDHOJA", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "ID_PERFIL", "layer_key", "horizonte", "LIM_SUP", "LIM_INF", "NOMEN_HTE", "CLAS_TEXT", "texture_lab", "R", "L", "A", "oc", "oc_d", "c_tot", "n_tot", "pHKCl", "PH", "ph_cacl2", "CIC", "cec_nh4", "ecec", "wpg2", "bulk_density_oven_dry", "ca_ext", "mg_ext", "na_ext", "k_ext", "CE", "ec_12pre")
  x.na = mex.sel.h[which(!mex.sel.h %in% names(mex.df))]
  if(length(x.na)>0){ for(i in x.na){ mex.df[,i] = NA } }
  chemsprops.MexicoINEGI = mex.df[,mex.sel.h]
  chemsprops.MexicoINEGI$source_db = "MexicoINEGI"
  chemsprops.MexicoINEGI$confidence_degree = 4
  chemsprops.MexicoINEGI$project_url = "https://www.inegi.org.mx/"
  chemsprops.MexicoINEGI$citation_url = "https://www.elementospolipub.org/ojs/index.php/epp/article/view/16"
  chemsprops.MexicoINEGI <- complete.vars(chemsprops.MexicoINEGI, sel=c("oc","PH","R"))
  saveRDS.gz(chemsprops.MexicoINEGI, "/mnt/diskstation/data/Soil_points/Mexico/INEGI/chemsprops.MexicoINEGI.rds")
}
dim(chemsprops.MexicoINEGI)
[1] 16820    39
## [1] 16820    39

Soil Profile DB for Costa Rica

if(!exists("chemsprops.CostaRica")){
  cr.hor = read.csv("/mnt/diskstation/data/Soil_points/Costa_Rica/Base_de_datos_version_1.2.3.csv", stringsAsFactors = FALSE)
  #plot(cr.hor[,c("X","Y")], pch="+", asp=1)
  cr.hor$usiteid = paste(cr.hor$Provincia, cr.hor$Cantón, cr.hor$Id, sep="_")
  #summary(cr.hor$Corg.)
  cr.hor$oc = cr.hor$Corg. * 10
  cr.hor$Densidad.Aparente = as.numeric(paste0(cr.hor$Densidad.Aparente))
  #summary(cr.hor$K)
  cr.hor$ca_ext = cr.hor$Ca * 200
  cr.hor$mg_ext = cr.hor$Mg * 121
  #cr.hor$na_ext = cr.hor$Na * 230
  cr.hor$k_ext = cr.hor$K * 391
  cr.hor$wpg2 = NA
  cr.hor$oc_d = signif(cr.hor$oc / 1000 * cr.hor$Densidad.Aparente * 1000 * (100 - ifelse(is.na(cr.hor$wpg2), 0, cr.hor$wpg2))/100, 3)
  #summary(cr.hor$oc_d)
  cr.sel.h = c("Id", "usiteid", "Fecha", "X", "Y", "Sub.Grupo", "labsampnum", "layer_key", "horizonte", "prof_inicio", "prof_final", "id_hz", "Clase.Textural", "texture_lab", "ARCILLA", "LIMO", "ARENA", "oc", "oc_d", "c_tot", "n_tot", "pHKCl", "pH_H2O", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "Densidad.Aparente", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = cr.sel.h[which(!cr.sel.h %in% names(cr.hor))]
  if(length(x.na)>0){ for(i in x.na){ cr.hor[,i] = NA } }
  chemsprops.CostaRica = cr.hor[,cr.sel.h]
  chemsprops.CostaRica$source_db = "CostaRica"
  chemsprops.CostaRica$confidence_degree = 4
  chemsprops.CostaRica$project_url = "http://www.cia.ucr.ac.cr"
  chemsprops.CostaRica$citation_url = "https://doi.org/10.18845/tm.v32i7.42"
  chemsprops.CostaRica <- complete.vars(chemsprops.CostaRica, sel=c("oc","pH_H2O","ARCILLA","Densidad.Aparente"), coords = c("X", "Y"))
  saveRDS.gz(chemsprops.CostaRica, "/mnt/diskstation/data/Soil_points/Costa_Rica/chemsprops.CostaRica.rds")
}
Warning: NAs introduced by coercion
dim(chemsprops.CostaRica)
[1] 2051   39
## [1] 2051   39

Iran soil profile DB

if(!exists("chemsprops.IRANSPDB")){
  na.s = c("?","","?.","??", -2147483647, -1.00e+308, "<NA>")
  iran.hor = read.csv("/mnt/diskstation/data/Soil_points/Iran/iran_sdbana.txt", stringsAsFactors = FALSE, na.strings = na.s, header = FALSE)[,1:12]
  names(iran.hor) = c("site_key", "hzn_desgn", "hzn_top", "hzn_bot", "ph_h2o", "ec_water_extractable", "oc", "CACO", "PBS", "sand_total", "silt_total", "clay_total")
  iran.hor$hzn_top = ifelse(is.na(iran.hor$hzn_top) & iran.hor$hzn_desgn=="A", 0, iran.hor$hzn_top)
  iran.hor2 = read.csv("/mnt/diskstation/data/Soil_points/Iran/iran_sdbhor.txt", stringsAsFactors = FALSE, na.strings = na.s, header = FALSE)[,1:8]
  names(iran.hor2) = c("site_key", "layer_sequence", "DESI", "hzn_top", "hzn_bot", "M_colour", "texture_description", "hzn_desgn")
  iran.site = read.csv("/mnt/diskstation/data/Soil_points/Iran/iran_sgdb.txt", stringsAsFactors = FALSE, na.strings = na.s, header = FALSE)
  names(iran.site) = c("usiteid", "latitude_decimal_degrees", "longitude_decimal_degrees", "FAO", "Tax", "site_key")
  st.cor = read.csv('./correlation/soil_types_correlation_full_data_FAO74_US_CPSS.csv')
  st.cor$Correlation_ = toupper(st.cor$Correlation)
  iran.site$SSL_classification_name = dplyr::left_join(iran.site["FAO"], st.cor, by=c("FAO"="Correlation_"), multiple = "first")$SoilUnitDUS
  summary(as.factor(iran.site$SSL_classification_name))
  iran.db = plyr::join_all(list(iran.site, iran.hor, iran.hor2))
  iran.db$organic_carbon = iran.db$oc * 10
  #summary(iran.db$oc)
  x.na = col.names[which(!col.names %in% names(iran.db))]
  if(length(x.na)>0){ for(i in x.na){ iran.db[,i] = NA } }
  chemsprops.IRANSPDB = iran.db[,col.names]
  chemsprops.IRANSPDB$source_db = "Iran_SPDB"
  chemsprops.IRANSPDB$confidence_degree = 4
  chemsprops.IRANSPDB$project_url = ""
  chemsprops.IRANSPDB$citation_url = "https://doi.org/10.1016/j.geoderma.2007.04.022"
  chemsprops.IRANSPDB <- complete.vars(chemsprops.IRANSPDB, sel=c("organic_carbon","ph_h2o","clay_total"))
  saveRDS.gz(chemsprops.IRANSPDB, "/mnt/diskstation/data/Soil_points/Iran/chemsprops.IRANSPDB.rds")
}
Joining by: site_key
Joining by: site_key, hzn_desgn, hzn_top, hzn_bot
dim(chemsprops.IRANSPDB)
[1] 4941   39
## [1] 4941   39

Northern circumpolar permafrost soil profiles

Note: this data set show extremely high SOC content (average 30%). It appears that this was a purposive survey i.e. surveyors were looking for peatlands and gelisols with high SOC content.

if(!exists("chemsprops.NCSCD")){
  ncscd.hors <- read.csv("/mnt/diskstation/data/Soil_points/INT/NCSCD/Harden_etal_2012_Hugelius_etal_2013_cleaned_data.csv", stringsAsFactors = FALSE)
  ## To translate LOI % into OC %: OC % = (−0.0013 × LOI %2 ) + (0.637 × LOI %)) was used
  ## for mineral soils: OC % = (−0.00005 × LOI %3 ) + (0.0059× LOI %2 ) + (0.362 × LOI %))
  ncscd.hors$oc = as.numeric(ncscd.hors$X.C)*10
  ## mean OC content 30%!!
  #summary(ncscd.hors$oc)
  #hist(ncscd.hors$Layer.thickness.cm, breaks = 45)
  ncscd.hors$Layer.thickness.cm = ifelse(ncscd.hors$Layer.thickness.cm<0, NA, ncscd.hors$Layer.thickness.cm)
  ncscd.hors$hzn_bot = ncscd.hors$Basal.Depth.cm + ncscd.hors$Layer.thickness.cm
  ncscd.hors$db_od = as.numeric(ncscd.hors$bulk.density.g.cm.3)
  ## BD >2.4t/m3 -> rock
  ncscd.hors$db_od = ifelse(ncscd.hors$db_od>2.4, NA, ncscd.hors$db_od)
  ## Can we assume no coarse fragments?
  ncscd.hors$wpg2 = 0
  ncscd.hors$oc_d = signif(ncscd.hors$oc / 1000 * ncscd.hors$db_od * 1000 * (100 - ifelse(is.na(ncscd.hors$wpg2), 0, ncscd.hors$wpg2))/100, 3)
  ## very high values >40 kg/m3
  ncscd.hors$site_obsdate = format(as.Date(ncscd.hors$Sample.date, format="%d-%m-%Y"), "%Y-%m-%d")
  #summary(ncscd.hors$db_od)
  ncscd.hors$Great.Group = ifelse(is.na(ncscd.hors$Great.Group), ncscd.hors$Suborder, ncscd.hors$Great.Group)
  #summary(as.factor(ncscd.hors$Great.Group))
  cor_ncsd = read.csv("./correlation/soil_type_correlation_ncscd.csv")
  ncscd.hors$SSL_classification_name = dplyr::left_join(ncscd.hors["Great.Group"], cor_ncsd[,c("Great.Group","SSL_classification_name")], by="Great.Group", multiple = "first")$SSL_classification_name
  ncscd.col = c("Profile.ID", "citation", "site_obsdate", "Long", "Lat", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "Basal.Depth.cm", "hzn_bot", "Horizon.type", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = ncscd.col[which(!ncscd.col %in% names(ncscd.hors))]
  if(length(x.na)>0){ for(i in x.na){ ncscd.hors[,i] = NA } }
  chemsprops.NCSCD = ncscd.hors[,ncscd.col]
  chemsprops.NCSCD$source_db = "NCSCD"
  chemsprops.NCSCD$confidence_degree = 10
  chemsprops.NCSCD$project_url = "https://bolin.su.se/data/ncscd/"
  chemsprops.NCSCD$citation_url = "https://doi.org/10.5194/essd-5-393-2013"
  chemsprops.NCSCD = complete.vars(chemsprops.NCSCD, sel = c("oc","db_od"), coords = c("Long", "Lat"))
  #str(levels(as.factor(chemsprops.NCSCD$Profile.ID)))
  ## 1476 unique sites
  # openair::scatterPlot(chemsprops.NCSCD, x = "oc", y = "db_od",
  #                    method = "hexbin", col = "increment",
  #                    log.x = TRUE, # log.y = TRUE,
  #                    xlab="SOC [g/kg]", ylab="Bulk density [t/m3]")
  # openair::scatterPlot(chemsprops.NCSCD, x = "oc", y = "oc_d",
  #                    method = "hexbin", col = "increment",
  #                    log.x = TRUE, log.y = TRUE,
  #                    xlab="SOC [g/kg]", ylab="SOC [kg/m3]")
  saveRDS.gz(chemsprops.NCSCD, "/mnt/diskstation/data/Soil_points/INT/NCSCD/chemsprops.NCSCD.rds")
}
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
dim(chemsprops.NCSCD)
[1] 7371   39
## [1] 7371   39

Relationship between SOC [kg/m3] and BD for NCSCD data set.

CSIRO National Soil Site Database

if(!exists("chemsprops.NatSoil")){
  library(Hmisc) 
  cmdb <- mdb.get("/mnt/diskstation/data/Soil_points/Australia/CSIRO/NatSoil_v2_20200612.mdb")
  #str(cmdb$SITES)
  au.obs = cmdb$OBSERVATIONS[,c("s.id", "o.location.notes", "o.date.desc", "o.latitude.GDA94", "o.longitude.GDA94", "o.soil.taxonomy")]
  au.obs$o.soil.taxonomy = paste(au.obs$o.soil.taxonomy)
  csiro.tax = read.csv("./tabular/CSIRO_codes_taxonomy.csv")
  au.obs$SSL_classification_name = dplyr::left_join(au.obs["o.soil.taxonomy"], csiro.tax, by=c("o.soil.taxonomy"="Code"), multiple = "first")$SSL_classification_name
  #summary(as.factor(au.obs$SSL_classification_name))
  ## only about 300 profiles with USDA classification
  au.obs = au.obs[!is.na(au.obs$o.longitude.GDA94),]
  coordinates(au.obs) <- ~o.longitude.GDA94+o.latitude.GDA94
  proj4string(au.obs) <- CRS("+proj=longlat +ellps=GRS80 +no_defs")
  au.xy <- data.frame(spTransform(au.obs, CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")))
  #plot(au.xy[,c("coords.x1", "coords.x2")])
  ## all variables in one column and need to be sorted based on the lab method
  #summary(cmdb$LAB_METHODS$LABM.SHORT.NAME)
  #write.csv(cmdb$LAB_METHODS, "/mnt/diskstation/data/Soil_points/Australia/CSIRO/NatSoil_v2_20200612_lab_methods.csv")
  lab.tbl = list(
          c("6_DC", "6A1", "6A1_UC", "6B1", "6B2", "6B2a", "6B2b", "6B3", "6B4", "6B4a", "6B4b", "6Z"), # %
          c("6B3a"), # g/kg
          c("6H4", "6H4_SCaRP"), # %
          c("7_C_B", "7_NR", "7A1", "7A2", "7A2a", "7A2b", "7A3", "7A4", "7A5", "7A6", "7A6a", "7A6b", "7A6b_MCLW"),  # g/kg
          c("4A1", "4_NR", "4A_C_2.5", "4A_C_1", "4G1"),
          c("4C_C_1", "4C1", "4C2", "23A"),
          c("4B_C_2.5", "4B1", "4B2"),
          c("P10_NR_C", "P10_HYD_C", "P10_PB_C", "P10_PB1_C", "P10_CF_C", "P10_I_C"),
          c("P10_NR_Z", "P10_HYD_Z", "P10_PB_Z", "P10_PB1_Z", "P10_CF_Z", "P10_I_Z"),
          c("P10_NR_S", "P10_HYD_S", "P10_PB_S", "P10_PB1_S", "P10_CF_S", "P10_I_S"),
          c("15C1modCEC", "15_HSK_CEC", "15J_CEC"),
          c("15I1", "15I2", "15I3", "15I4", "15D3_CEC"),
          c("15_BASES", "15_NR", "15J_H", "15J1"),
          c("2Z2_Grav", "P10_GRAV"),
          c("503.08a", "P3A_NR", "P3A1", "P3A1_C4", "P3A1_CLOD", "P3A1_e"),
          c("18F1_CA"),
          c("18F1_MG"),
          c("18F1_NA"),
          c("18F1_K", "18F2", "18A1mod", "18_NR", "18A1", "18A1_NR", "18B1", "18B2"),
          c("3_C_B", "3_NR", "3A_TSS"),
          c("3A_C_2.5", "3A1")
          )
  names(lab.tbl) = c("oc", "ocP", "c_tot", "n_tot", "ph_h2o", "ph_kcl", "ph_cacl2", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "cec_sum", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  val.lst = lapply(1:length(lab.tbl), function(i){
       x <- cmdb$LAB_RESULTS[cmdb$LAB_RESULTS$labm.code %in% lab.tbl[[i]], c("agency.code", "proj.code", "labm.code", "s.id", "o.id", "h.no", "labr.value")]; 
       names(x)[7] <- names(lab.tbl)[i]; return(x) })
  names(val.lst) = names(lab.tbl)
  val.lst$oc$oc = val.lst$oc$oc * 10
  summary(as.factor(val.lst$oc$labm.code))
  ## 6_DC    6A1 6A1_UC    6B1    6B2   6B2b    6B3     6Z 
  ##  403  15403   8094    119   5447      4   5735   1899 
  ## 6_DC = Organic carbon (%) - Dry combustion
  ## 6A1_UC = Organic carbon (%) - Uncorrected Walkley and Black method
  val.lst$oc$oc[val.lst$oc$labm.code == "6A1_UC"] = val.lst$oc$oc[val.lst$oc$labm.code == "6A1_UC"] * 1.3
  #summary(val.lst$oc$oc)
  #str(val.lst, max.level = 1)
  for(i in 1:length(val.lst)){ val.lst[[i]]$h.id <- paste(val.lst[[i]]$agency.code, val.lst[[i]]$proj.code, val.lst[[i]]$s.id, val.lst[[i]]$o.id, val.lst[[i]]$h.no, sep="_") }
  au.hor <- plyr::join_all(lapply(val.lst, function(x){x[,7:8]}), match="first")
  #str(as.factor(au.hor$h.id))
  cmdb$HORIZONS$h.id = paste(cmdb$HORIZONS$agency.code, cmdb$HORIZONS$proj.code, cmdb$HORIZONS$s.id, cmdb$HORIZONS$o.id, cmdb$HORIZONS$h.no, sep="_")
  cmdb$HORIZONS$hzn_desgn = paste(cmdb$HORIZONS$h.desig.master, cmdb$HORIZONS$h.desig.subdiv, cmdb$HORIZONS$h.desig.suffix, sep="")
  au.horT <- plyr::join_all(list(cmdb$HORIZONS[,c("h.id","s.id","h.no","h.texture","hzn_desgn","h.upper.depth","h.lower.depth")], au.hor, au.xy))
  au.horT$site_obsdate = format(as.Date(au.horT$o.date.desc, format="%d%m%Y"), "%Y-%m-%d")
  #summary(as.Date(au.horT$site_obsdate))
  au.horT$sand_tot_psa = ifelse(is.na(au.horT$sand_tot_psa), 100-(au.horT$clay_tot_psa + au.horT$silt_tot_psa), au.horT$sand_tot_psa)
  au.horT$hzn_top = au.horT$h.upper.depth*100
  au.horT$hzn_bot = au.horT$h.lower.depth*100
  #summary(au.horT$oc)
  au.horT$oc_d = signif(au.horT$oc / 1000 * au.horT$db_od * 1000 * (100 - ifelse(is.na(au.horT$wpg2), 0, au.horT$wpg2))/100, 3)
  #summary(au.horT$oc_d)
  au.cols.n = c("s.id", "o.location.notes", "site_obsdate", "coords.x1", "coords.x2", "SSL_classification_name", "h.id", "layer_key", "h.no", "hzn_top", "hzn_bot", "hzn_desgn", "h.texture", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = au.cols.n[which(!au.cols.n %in% names(au.horT))]
  if(length(x.na)>0){ for(i in x.na){ au.horT[,i] = NA } }
  chemsprops.NatSoil = au.horT[,au.cols.n]
  chemsprops.NatSoil$source_db = "CSIRO_NatSoil"
  chemsprops.NatSoil$confidence_degree = 3
  chemsprops.NatSoil$project_url = "https://www.csiro.au/en/Do-business/Services/Enviro/Soil-archive"
  chemsprops.NatSoil$citation_url = "https://doi.org/10.25919/5eeb2a56eac12"
  chemsprops.NatSoil = complete.vars(chemsprops.NatSoil, sel = c("oc","db_od","clay_tot_psa","ph_h2o"), coords = c("coords.x1", "coords.x2"))
  saveRDS.gz(chemsprops.NatSoil, "/mnt/diskstation/data/Soil_points/Australia/CSIRO/chemsprops.NatSoil.rds")
}

Attaching package: 'Hmisc'
The following objects are masked from 'package:plyr':

    is.discrete, summarize
The following objects are masked from 'package:terra':

    describe, mask, units, zoom
The following objects are masked from 'package:dplyr':

    src, summarize
The following objects are masked from 'package:base':

    format.pval, units
14 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 13 14 
11 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 
27 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
14 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 13 14 
17 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
114 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 
11 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 
12 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 
43 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 
11 variables; Processing variable:1 2 3 4 5 6 7 8 9 10 11 
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: h.id
Joining by: s.id
dim(chemsprops.NatSoil)
[1] 89754    39
## [1] 89754    39

NAMSOTER

  • Coetzee, M. E. (2001). NAMSOTER, a SOTER database for Namibia. Agroecological Zoning, 458.
  • Coetzee, M. E. (2009). Chemical characterisation of the soils of East Central Namibia (Doctoral dissertation, Stellenbosch: University of Stellenbosch).
if(!exists("chemsprops.NAMSOTER")){
  nam.profs <- read.csv("/mnt/diskstation/data/Soil_points/Namibia/NAMSOTER/Namibia_all_profiles.csv", na.strings = c("-9999", "999", "9999", "NA"))
  #nam.sm = summary(as.factor(nam.profs$CLAF))
  #nam.tax = as.data.frame(nam.sm)
  #nam.tax$levels = attr(nam.sm, "names")
  #write.csv(nam.tax, "/mnt/diskstation/data/Soil_points/Namibia/NAMSOTER/namsoter_taxon_wrb.csv")
  st.cor = read.csv('./correlation/soil_type_correlation_ISRIC_WISE.csv')
  st.cor$FAO_90_ = gsub("SOLS", "SOL", toupper(st.cor$FAO_90.1))
  nam.profs$SSL_classification_name = paste0( dplyr::left_join(nam.profs["CLAF"], st.cor, by=c("CLAF"="FAO_90_"), multiple = "first")$Class_1, " / ",
                    dplyr::left_join(nam.profs["CLAF"], st.cor, by=c("CLAF"="FAO_90_"), multiple = "first")$Class_2)
  #summary(as.factor(nam.profs$SSL_classification_name))
  nam.hors <- read.csv("/mnt/diskstation/data/Soil_points/Namibia/NAMSOTER/Namibia_all_horizons.csv", na.strings = c("-9999", "999", "9999", "NA"))
  #summary(nam.hors$TOTN)
  #summary(nam.hors$TOTC)
  nam.hors$hzn_top <- NA
  nam.hors$hzn_top <- ifelse(nam.hors$HONU==1, 0, nam.hors$hzn_top)
  h.lst <- lapply(1:7, function(x){which(nam.hors$HONU==x)})
  for(i in 2:7){
    sel <- match(nam.hors$PRID[h.lst[[i]]], nam.hors$PRID[h.lst[[i-1]]])
    nam.hors$hzn_top[h.lst[[i]]] <- nam.hors$HBDE[h.lst[[i-1]]][sel]
  }
  nam.hors$HBDE <- ifelse(is.na(nam.hors$HBDE), nam.hors$hzn_top+50, nam.hors$HBDE)
  #summary(nam.hors$HBDE)
  namALL = plyr::join(nam.hors, nam.profs, by=c("PRID"))
  namALL$k_ext = namALL$EXCK * 391
  namALL$ca_ext = namALL$EXCA * 200
  namALL$mg_ext = namALL$EXMG * 121
  namALL$na_ext = namALL$EXNA * 230
  #summary(namALL$MINA)
  namALL$BULK <- ifelse(namALL$BULK>2.4, NA, namALL$BULK)
  namALL$wpg2 = ifelse(namALL$MINA=="D", 80, ifelse(namALL$MINA=="A", 60, ifelse(namALL$MINA=="M", 25, ifelse(namALL$MINA=="C", 10, ifelse(namALL$MINA=="V", 1, ifelse(namALL$MINA=="F", 2.5, ifelse(namALL$MINA=="M/A", 40, ifelse(namALL$MINA=="C/M", 15, 0))))))))
  #hist(namALL$wpg2)
  ## TOTC: Organic Carbon (Colourimetric Walkey-Black Method) (SOP Soil-125)
  namALL$oc = namALL$TOTC * 1.3
  namALL$oc_d = signif(namALL$oc / 1000 * namALL$BULK * 1000 * (100 - ifelse(is.na(namALL$wpg2), 0, namALL$wpg2))/100, 3)
  #summary(namALL$oc_d)
  #summary(namALL$PHAQ) ## Check - high ph! mean = 7.9
  namALL$site_obsdate = 2000
  nam.col = c("PRID", "SLID", "site_obsdate", "LONG", "LATI", "SSL_classification_name", "labsampnum", "layer_key", "HONU", "hzn_top", "HBDE", "HODE", "PSCL", "texture_lab", "CLPC", "STPC", "SDTO", "TOTC", "oc_d", "c_tot", "TOTN", "PHKC", "PHAQ", "ph_cacl2", "CECS", "cec_nh4", "ecec", "wpg2", "BULK", "ca_ext", "mg_ext", "na_ext", "k_ext", "ELCO", "ec_12pre")
  x.na = nam.col[which(!nam.col %in% names(namALL))]
  if(length(x.na)>0){ for(i in x.na){ namALL[,i] = NA } }
  chemsprops.NAMSOTER = namALL[,nam.col]
  chemsprops.NAMSOTER$source_db = "NAMSOTER"
  chemsprops.NAMSOTER$confidence_degree = 2
  chemsprops.NAMSOTER$project_url = ""
  chemsprops.NAMSOTER$citation_url = "https://edepot.wur.nl/485173"
  chemsprops.NAMSOTER = complete.vars(chemsprops.NAMSOTER, sel = c("TOTC","CLPC","PHAQ"), coords = c("LONG", "LATI"))
  saveRDS.gz(chemsprops.NAMSOTER, "/mnt/diskstation/data/Soil_points/Namibia/chemsprops.NAMSOTER.rds")
}
dim(chemsprops.NAMSOTER)
[1] 2955   39
## [1] 2955   39

Worldwide organic soil carbon and nitrogen data

  • Zinke, P. J., Millemann, R. E., & Boden, T. A. (1986). Worldwide organic soil carbon and nitrogen data. Carbon Dioxide Information Center, Environmental Sciences Division, Oak Ridge National Laboratory. Data download URL: https://dx.doi.org/10.3334/CDIAC/lue.ndp018

  • Note: poor spatial location accuracy i.e. <10 km. Bulk density for many points has been estimated not measured. Sampling year has not been but literature indicates: 1965, 1974, 1976, 1978, 1979, 1984. Most of samples come from natural vegetation (undisturbed) areas.

if(!exists("chemsprops.ISCND")){
  ndp.profs <- read.csv("/mnt/diskstation/data/Soil_points/INT/ISCND/ndp018.csv", na.strings = c("-9999", "?", "NA"), stringsAsFactors = FALSE)
  names(ndp.profs) = c("PROFILE", "CODE", "CARBON", "NITROGEN", "LAT", "LONG", "ELEV", "SOURCE", "HOLDRIGE", "OLSON", "PARENT")
  for(j in c("CARBON","NITROGEN","ELEV")){  ndp.profs[,j] <- as.numeric(ndp.profs[,j])   }
  #summary(ndp.profs$CARBON)
  lat.s  <- grep("S", ndp.profs$LAT) # lat.n <- grep("N", ndp.profs$LAT)
  ndp.profs$latitude_decimal_degrees = as.numeric(gsub("[^0-9.-]", "", ndp.profs$LAT))
  ndp.profs$latitude_decimal_degrees[lat.s] = ndp.profs$latitude_decimal_degrees[lat.s] * -1
  lon.w <- grep("W", ndp.profs$LONG) # lon.e  <- grep("E", ndp.profs$LONG, fixed = TRUE)
  ndp.profs$longitude_decimal_degrees = as.numeric(gsub("[^0-9.-]", "", ndp.profs$LONG))
  ndp.profs$longitude_decimal_degrees[lon.w] = ndp.profs$longitude_decimal_degrees[lon.w] * -1
  #plot(ndp.profs[,c("longitude_decimal_degrees", "latitude_decimal_degrees")])
  ndp.profs$hzn_top = 0; ndp.profs$hzn_bot = 100
  ## Sampling years from the doc: 1965, 1974, 1976, 1978, 1979, 1984 
  ndp.profs$site_obsdate = "1982"
  ndp.col = c("PROFILE", "CODE", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "CARBON", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = ndp.col[which(!ndp.col %in% names(ndp.profs))]
  if(length(x.na)>0){ for(i in x.na){ ndp.profs[,i] = NA } }
  chemsprops.ISCND = ndp.profs[,ndp.col]
  chemsprops.ISCND$source_db = "ISCND"
  chemsprops.ISCND$confidence_degree = 8
  chemsprops.ISCND$project_url = "https://iscn.fluxdata.org/data/"
  chemsprops.ISCND$citation_url = "https://dx.doi.org/10.3334/CDIAC/lue.ndp018"
  chemsprops.ISCND = complete.vars(chemsprops.ISCND, sel = c("CARBON"), coords = c("longitude_decimal_degrees", "latitude_decimal_degrees"))  
  saveRDS.gz(chemsprops.ISCND, "/mnt/diskstation/data/Soil_points/INT/ISCND/chemsprops.ISCND.rds")
}
Warning: NAs introduced by coercion
dim(chemsprops.ISCND)
[1] 4114   39
## [1] 4114   39

Interior Alaska Carbon and Nitrogen stocks

if(!exists("chemsprops.Alaska")){
  al.gps <- read.csv("/mnt/diskstation/data/Soil_points/USA/Alaska_Interior/Site_GPS_coordinates_v1-1.csv", stringsAsFactors = FALSE)
  ## Different datums!
  #summary(as.factor(al.gps$Datum))
  al.gps1 = al.gps[al.gps$Datum=="NAD83",]
  coordinates(al.gps1) = ~ Longitude + Latitude
  proj4string(al.gps1) = "+proj=longlat +datum=NAD83"
  al.gps0 = spTransform(al.gps1, CRS("+proj=longlat +datum=WGS84"))
  al.gps[which(al.gps$Datum=="NAD83"),"Longitude"] = al.gps0@coords[,1]
  al.gps[which(al.gps$Datum=="NAD83"),"Latitude"] = al.gps0@coords[,2]
  al.gps$site = al.gps$Site
  al.hor <- read.csv("/mnt/diskstation/data/Soil_points/USA/Alaska_Interior/Generalized_models_for_CandN_Alaska_v1-1.csv", stringsAsFactors = FALSE)
  al.hor$hzn_top = al.hor$depth - as.numeric(al.hor$thickness)
  al.hor$site_obsdate = format(as.Date(al.hor$date, format = "%m/%d/%Y"), "%Y-%m-%d")
  ## "We analyzed soil samples for total C and N using a Carlo Erba NA1500 elemental analyzer (Fisons Instruments). 
  ## Samples were combusted in the presence of excess oxygen."
  al.hor$oc = as.numeric(al.hor$carbon) * 10
  al.hor$n_tot = as.numeric(al.hor$nitrogen) * 10
  al.hor$oc_d = as.numeric(al.hor$Cdensity) * 1000
  #summary(al.hor$oc_d)
  al.horA = plyr::join(al.hor, al.gps, by=c("site"))
  al.col = c("profile", "description", "site_obsdate", "Longitude", "Latitude", "SSL_classification_name", "sampleID", "layer_key", "layer_sequence", "hzn_top", "depth", "Hcode", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "BDfine", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = al.col[which(!al.col %in% names(al.horA))]
  if(length(x.na)>0){ for(i in x.na){ al.horA[,i] = NA } }
  chemsprops.Alaska = al.horA[,al.col]
  chemsprops.Alaska$source_db = "Alaska_interior"
  chemsprops.Alaska$confidence_degree = 1
  chemsprops.Alaska$project_url = "https://www.usgs.gov/centers/gmeg"
  chemsprops.Alaska$citation_url = "https://doi.org/10.5194/essd-12-1745-2020"
  chemsprops.Alaska = complete.vars(chemsprops.Alaska, sel = c("oc","oc_d"), coords = c("Longitude", "Latitude"))
  # openair::scatterPlot(chemsprops.Alaska, x = "oc", y = "oc_d",
  #                    method = "hexbin", col = "increment",
  #                    log.x = TRUE, log.y = TRUE,
  #                    xlab="SOC [g/kg]", ylab="SOC [kg/m3]")
  saveRDS.gz(chemsprops.Alaska, "/mnt/diskstation/data/Soil_points/USA/Alaska_Interior/chemsprops.Alaska.rds")
}
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
dim(chemsprops.Alaska)
[1] 4013   39
## [1] 4013   39

Relationship between SOC [kg/m3] and SOC [g/kg] for the Alaska data set.

Croatian Soil Pedon data

  • Martinović J., (2000) “Tla u Hrvatskoj”, Monografija, Državna uprava za zaštitu prirode i okoliša, str. 269, Zagreb. ISBN: 9536793059
  • Bašić F., (2014) “The Soils of Croatia”. World Soils Book Series, Springer Science & Business Media, 179 pp. ISBN: 9400758154
if(!exists("chemsprops.bpht")){
  bpht.site <- read.csv("/mnt/diskstation/data/Soil_points/Croatia/WBSoilHR_sites_1997.csv", stringsAsFactors = FALSE)
  bpht.hors <- read.csv("/mnt/diskstation/data/Soil_points/Croatia/WBSoilHR_1997.csv", stringsAsFactors = FALSE)
  ## filter typos
  for(j in c("GOR", "DON", "MKP", "PH1", "PH2", "MSP", "MP", "MG", "HUM", "EXTN", "EXTP", "EXTK", "CAR")){
    bpht.hors[,j] = as.numeric(bpht.hors[,j])
  }
  ## Convert to the USDA standard
  bpht.hors$sand_tot_psa <- bpht.hors$MSP * 0.8 + bpht.hors$MKP
  bpht.hors$silt_tot_psa <- bpht.hors$MP + bpht.hors$MSP * 0.2
  ## A critical review of the conventional SOC to SOM conversion factor
  ## https://doi.org/10.1016/j.geoderma.2010.02.003
  bpht.hors$oc <- signif(bpht.hors$HUM/2 * 1.3 * 10, 3)
  ## summary(bpht.hors$sand_tot_psa)
  bpht.s.lst <- c("site_key", "UZORAK", "Cro16.30_X", "Cro16.30_Y", "FITOC", "STIJENA", "HID_DREN", "DUBINA")
  bpht.hor = plyr::join(bpht.site[,bpht.s.lst], bpht.hors)
  bpht.hor$wpg2 = bpht.hor$STIJENA
  bpht.hor$DON <- ifelse(is.na(bpht.hor$DON), bpht.hor$GOR+50, bpht.hor$DON)
  bpht.hor$depth <- bpht.hor$GOR + (bpht.hor$DON - bpht.hor$GOR)/2
  bpht.hor = bpht.hor[!is.na(bpht.hor$depth),]
  bpht.hor$wpg2[which(bpht.hor$GOR<30)] <- bpht.hor$wpg2[which(bpht.hor$GOR<30)]*.3
  bpht.hor$sample_key = make.unique(paste(bpht.hor$PEDOL_ID, bpht.hor$OZN, sep="_"))
  bpht.hor$sand_tot_psa[bpht.hor$sample_key=="805_Amo"] <- bpht.hor$sand_tot_psa[bpht.hor$sample_key=="805_Amo"]/10
  ## convert N, P, K
  #summary(bpht.hor$EXTK) -- measurements units?
  bpht.hor$p_ext = bpht.hor$EXTP * 4.364
  bpht.hor$k_ext = bpht.hor$EXTK * 8.3013
  bpht.hor = bpht.hor[!is.na(bpht.hor$`Cro16.30_X`),]
  ## coordinates:
  bpht.pnts = SpatialPointsDataFrame(bpht.hor[,c("Cro16.30_X","Cro16.30_Y")], bpht.hor["site_key"], proj4string = CRS("+proj=tmerc +lat_0=0 +lon_0=16.5 +k=0.9999 +x_0=2500000 +y_0=0 +ellps=bessel +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824 +units=m"))
  bpht.pnts.ll <- spTransform(bpht.pnts, CRS("+proj=longlat +datum=WGS84"))
  bpht.hor$longitude_decimal_degrees = bpht.pnts.ll@coords[,1]
  bpht.hor$latitude_decimal_degrees = bpht.pnts.ll@coords[,2] 
  bpht.h.lst <- c('site_key', 'OZ_LIST_PROF', 'UZORAK', 'longitude_decimal_degrees', 'latitude_decimal_degrees', "SSL_classification_name", 'labsampnum', "layer_key", 'layer_sequence', 'GOR', 'DON', 'OZN', 'TT', "texture_lab", 'MG', 'silt_tot_psa', 'sand_tot_psa', 'oc', 'oc_d', 'c_tot', 'EXTN', 'PH2', 'PH1', 'ph_cacl2', 'cec_sum', 'cec_nh4', 'ecec', 'wpg2', 'db_od', 'ca_ext', 'mg_ext', 'na_ext', 'k_ext', 'ec_satp', 'ec_12pre')
  x.na = bpht.h.lst[which(!bpht.h.lst %in% names(bpht.hor))]
  if(length(x.na)>0){ for(i in x.na){ bpht.hor[,i] = NA } }
  chemsprops.bpht = bpht.hor[,bpht.h.lst]
  chemsprops.bpht$source_db = "Croatian_Soil_Pedon"
  chemsprops.bpht$confidence_degree = 1
  chemsprops.bpht$project_url = "http://www.haop.hr/"
  chemsprops.bpht$citation_url = "https://books.google.nl/books?id=k_a2MgAACAAJ"
  chemsprops.bpht = complete.vars(chemsprops.bpht, sel = c("oc","MG","PH1","k_ext"))
  saveRDS.gz(chemsprops.bpht, "/mnt/diskstation/data/Soil_points/Croatia/chemsprops.bpht.rds")
}
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Joining by: site_key
dim(chemsprops.bpht)
[1] 5757   39
## [1] 5757   39

Remnant native SOC database

if(!exists("chemsprops.RemnantSOC")){
  rem.hor <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/INT/WHRC_remnant_SOC/remnant+native+SOC+database+for+release.xlsx", sheet = 3)
  rem.site <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/INT/WHRC_remnant_SOC/remnant+native+SOC+database+for+release.xlsx", sheet = 2)
  rem.ref <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/INT/WHRC_remnant_SOC/remnant+native+SOC+database+for+release.xlsx", sheet = 4)
  rem.site = plyr::join(rem.site, rem.ref[,c("Source.No.","DOI","Sample_year")], by=c("Source.No."))
  rem.site$Site = rem.site$Site.ID
  rem.horA = plyr::join(rem.hor, rem.site, by=c("Site"))
  rem.horA$hzn_top = rem.horA$'U_depth.(m)'*100
  rem.horA$hzn_bot = rem.horA$'L_depth.(m)'*100
  ## Estimated BD = bulk density estimated by simple pedotransfer function (BD = 1.5833*EXP(-0.012*OC); see SI of paper)
  rem.horA$db_od = ifelse(is.na(as.numeric(rem.horA$'measured.BD.(Mg/m3)')), as.numeric(rem.horA$'estimated.BD.(Mg/m3)'), as.numeric(rem.horA$'measured.BD.(Mg/m3)'))
  rem.horA$oc_d = signif(rem.horA$'OC.(g/kg)' * rem.horA$db_od, 3)
  #summary(rem.horA$oc_d)
  rem.col = c("Source.No.", "Site", "Sample_year", "Longitude", "Latitude", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "OC.(g/kg)", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = rem.col[which(!rem.col %in% names(rem.horA))]
  if(length(x.na)>0){ for(i in x.na){ rem.horA[,i] = NA } }
  chemsprops.RemnantSOC = rem.horA[,rem.col]
  chemsprops.RemnantSOC$source_db = "WHRC_remnant_SOC"
  chemsprops.RemnantSOC$confidence_degree = 8
  chemsprops.RemnantSOC$project_url = "https://www.woodwellclimate.org/research-area/carbon/"
  chemsprops.RemnantSOC$citation_url = "http://dx.doi.org/10.1073/pnas.1706103114"
  chemsprops.RemnantSOC = complete.vars(chemsprops.RemnantSOC, sel = c("OC.(g/kg)","oc_d"), coords = c("Longitude", "Latitude"))  
  saveRDS.gz(chemsprops.RemnantSOC, "/mnt/diskstation/data/Soil_points/INT/WHRC_remnant_SOC/chemsprops.RemnantSOC.rds")
}
Warning in ifelse(is.na(as.numeric(rem.horA$"measured.BD.(Mg/m3)")),
as.numeric(rem.horA$"estimated.BD.(Mg/m3)"), : NAs introduced by coercion
Warning in ifelse(is.na(as.numeric(rem.horA$"measured.BD.(Mg/m3)")),
as.numeric(rem.horA$"estimated.BD.(Mg/m3)"), : NAs introduced by coercion
dim(chemsprops.RemnantSOC)
[1] 1631   39
## [1] 1631   39

Soil Health DB

Note: some information is available about column names (see: https://www.nature.com/articles/s41597-020-0356-3/tables/3) but detailed explanation is missing.

if(!exists("chemsprops.SoilHealthDB")){
  shdb.hor <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/INT/SoilHealthDB/SoilHealthDB_V2.xlsx", sheet = 1, na.strings = c("NA", "NotAvailable", "Not-available"))
  #summary(as.factor(shdb.hor$SoilFamily))
  #summary(as.factor(shdb.hor$SamplingDepth))
  shdb.hor$hzn_top = as.numeric(sapply(shdb.hor$SamplingDepth, function(i){ strsplit(i, "-to-")[[1]][1] }))
  shdb.hor$hzn_bot = as.numeric(sapply(shdb.hor$SamplingDepth, function(i){ strsplit(i, "-to-")[[1]][2] }))
  shdb.hor$hzn_top = ifelse(is.na(shdb.hor$hzn_top), 0, shdb.hor$hzn_top)
  shdb.hor$hzn_bot = ifelse(is.na(shdb.hor$hzn_bot), 15, shdb.hor$hzn_bot)
  shdb.hor$oc = as.numeric(shdb.hor$BackgroundSOC) * 10
  shdb.hor$oc_d = signif(shdb.hor$oc * shdb.hor$SoilBD, 3)
  #summary(shdb.hor$oc_d)
  for(j in c("ClayPerc", "SiltPerc", "SandPerc", "SoilpH", "Longitude", "Latitude")){   shdb.hor[,j]  <- as.numeric(shdb.hor[,j])   }
  shdb.hor$ClayPerc = ifelse(is.na(shdb.hor$ClayPerc), 100-(shdb.hor$SiltPerc+shdb.hor$SandPerc), shdb.hor$ClayPerc)
  #summary(shdb.hor$oc_d)
  shdb.col = c("StudyID", "ExperimentID", "SamplingYear", "Longitude", "Latitude", "SoilFamily", "labsampnum", "layer_key", "layer_sequence", "hzn_top", "hzn_bot", "hzn_desgn", "Texture", "texture_lab", "ClayPerc", "SiltPerc", "SandPerc", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "SoilpH", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "wpg2", "SoilBD", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = shdb.col[which(!shdb.col %in% names(shdb.hor))]
  if(length(x.na)>0){ for(i in x.na){ shdb.hor[,i] = NA } }
  chemsprops.SoilHealthDB = shdb.hor[,shdb.col]
  chemsprops.SoilHealthDB$source_db = "SoilHealthDB"
  chemsprops.SoilHealthDB$confidence_degree = 8
  chemsprops.SoilHealthDB$project_url = "https://github.com/jinshijian/SoilHealthDB"
  chemsprops.SoilHealthDB$citation_url = "https://doi.org/10.1038/s41597-020-0356-3"
  chemsprops.SoilHealthDB = complete.vars(chemsprops.SoilHealthDB, sel = c("ClayPerc", "SoilpH", "oc", "SoilFamily"), coords = c("Longitude", "Latitude"))  
  saveRDS.gz(chemsprops.SoilHealthDB, "/mnt/diskstation/data/Soil_points/INT/SoilHealthDB/chemsprops.SoilHealthDB.rds")
}
Warning: NAs introduced by coercion
dim(chemsprops.SoilHealthDB)
[1] 5050   39
## [1] 5050   39

Global Harmonized Dataset of SOC change under perennial crops

Note: Many missing years for PREVIOUS SOC AND SOIL CHARACTERISTICS.

if(!exists("chemsprops.SOCPDB")){
  library("readxl")
  socpdb <- readxl::read_excel("/mnt/diskstation/data/Soil_points/INT/SOCPDB/SOC_perennials_DATABASE.xls", skip=1, sheet = 1)
  #names(socpdb)
  #summary(as.factor(socpdb$USDA))
  #summary(as.numeric(socpdb$year_measure))
  socpdb$year_measure = ifelse(is.na(as.numeric(socpdb$year_measure)), as.numeric(socpdb$yearPpub)-5, as.numeric(socpdb$year_measure))
  socpdb$year_measure = ifelse(socpdb$year_measure<1960, NA, socpdb$year_measure)
  socpdb$depth_current = socpdb$soil_to_cm_current - socpdb$soil_from_cm_current
  socpdb = socpdb[socpdb$depth_current>5,]
  socpdb$SOC_g_kg_current = ifelse(is.na(as.numeric(socpdb$SOC_g_kg_current)), as.numeric(socpdb$SOC_Mg_ha_current) / (socpdb$depth_current/100 * as.numeric(socpdb$bulk_density_Mg_m3_current) * 1000) * 10, as.numeric(socpdb$SOC_g_kg_current))
  socpdb$depth_previous = socpdb$soil_to_cm_previous - socpdb$soil_from_cm_previous
  socpdb$SOC_g_kg_previous = ifelse(is.na(as.numeric(socpdb$SOC_g_kg_previous)), as.numeric(socpdb$SOC_Mg_ha_previous) / (socpdb$depth_previous/100 * as.numeric(socpdb$Bulkdensity_previous) * 1000) * 10, as.numeric(socpdb$SOC_g_kg_previous))
  hor.b = which(names(socpdb) %in% c("ID", "plotID", "Longitud", "Latitud", "year_measure", "years_since_luc", "USDA", "original_source"))
  socpdb1 = socpdb[,c(hor.b, grep("_current", names(socpdb)))]
  #summary(as.numeric(socpdb1$years_since_luc))
  ## 10 yrs median
  socpdb1$site_obsdate = socpdb1$year_measure
  socpdb2 = socpdb[,c(hor.b, grep("_previous", names(socpdb)))]
  socpdb2$site_obsdate = socpdb2$year_measure - ifelse(is.na(as.numeric(socpdb2$years_since_luc)), 10, as.numeric(socpdb2$years_since_luc))
  colnames(socpdb2) <- sub("_previous", "_current", colnames(socpdb2))
  nm.socpdb = c("site_key", "upedonid", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "hzn_top", "hzn_bot", "clay_total", "silt_total", "sand_total", "organic_carbon", "ph_h2o", "bulk_density_oven_dry")
  sel.socdpb1 = c("ID", "original_source", "site_obsdate", "Longitud", "Latitud", "USDA", "soil_from_cm_current", "soil_to_cm_current", "%clay_current", "%silt_current", "%sand_current", "SOC_g_kg_current", "ph_current", "bulk_density_Mg_m3_current")
  sel.socdpb2 = c("ID", "original_source", "site_obsdate", "Longitud", "Latitud", "USDA", "soil_from_cm_current", "soil_to_cm_current", "%clay_current", "%silt_current", "%sand_current", "SOC_g_kg_current", "ph_current", "Bulkdensity_current")   
  socpdbALL = as.data.frame(dplyr::bind_rows(lapply(list(socpdb1[,sel.socdpb1], socpdb2[,sel.socdpb2]), function(i){ dplyr::mutate_all(setNames(i, nm.socpdb), as.character) })))
  for(j in which(names(socpdbALL) %in% c("longitude_decimal_degrees", "latitude_decimal_degrees", "hzn_top", "hzn_bot", "clay_total", "silt_total", "sand_total", "organic_carbon", "ph_h2o", "bulk_density_oven_dry"))){ socpdbALL[,j] <- as.numeric(socpdbALL[,j]) }
  #summary(socpdbALL$organic_carbon) ## mean = 15
  #summary(socpdbALL$bulk_density_oven_dry)
  #summary(socpdbALL$ph_h2o)
  socpdbALL$oc_d = signif(socpdbALL$organic_carbon * socpdbALL$bulk_density_oven_dry, 3)
  #summary(socpdbALL$oc_d)
  x.na = col.names[which(!col.names %in% names(socpdbALL))]
  if(length(x.na)>0){ for(i in x.na){ socpdbALL[,i] = NA } }
  chemsprops.SOCPDB <- socpdbALL[,col.names]
  chemsprops.SOCPDB$source_db = "SOCPDB"
  chemsprops.SOCPDB$confidence_degree = 5
  chemsprops.SOCPDB$project_url = "https://africap.info/"
  chemsprops.SOCPDB$citation_url = "https://doi.org/10.1038/s41597-019-0062-1"
  chemsprops.SOCPDB = complete.vars(chemsprops.SOCPDB, sel = c("organic_carbon","ph_h2o","clay_total"))
  saveRDS.gz(chemsprops.SOCPDB, "/mnt/diskstation/data/Soil_points/INT/SOCPDB/chemsprops.SOCPDB.rds")
}
Warning: Expecting numeric in AP1137 / R1137C42: got 'YES'
Warning: Expecting numeric in AP1138 / R1138C42: got 'YES'
Warning: Expecting numeric in AP1139 / R1139C42: got 'YES'
Warning: Expecting numeric in AP1140 / R1140C42: got 'YES'
Warning: Expecting numeric in AP1141 / R1141C42: got 'YES'
Warning: Expecting numeric in AP1142 / R1142C42: got 'YES'
Warning: Expecting numeric in AP1143 / R1143C42: got 'YES'
Warning: Expecting numeric in AP1144 / R1144C42: got 'YES'
Warning: Expecting numeric in I1305 / R1305C9: got 'NA'
Warning: Expecting numeric in J1305 / R1305C10: got 'NA'
Warning: Expecting numeric in I1306 / R1306C9: got 'NA'
Warning: Expecting numeric in J1306 / R1306C10: got 'NA'
Warning: Expecting numeric in I1307 / R1307C9: got 'NA'
Warning: Expecting numeric in J1307 / R1307C10: got 'NA'
Warning: Expecting numeric in I1308 / R1308C9: got 'NA'
Warning: Expecting numeric in J1308 / R1308C10: got 'NA'
Warning: Expecting numeric in I1309 / R1309C9: got 'NA'
Warning: Expecting numeric in J1309 / R1309C10: got 'NA'
Warning: Expecting numeric in I1310 / R1310C9: got 'NA'
Warning: Expecting numeric in J1310 / R1310C10: got 'NA'
Warning: Expecting numeric in I1311 / R1311C9: got 'NA'
Warning: Expecting numeric in J1311 / R1311C10: got 'NA'
Warning: Expecting numeric in I1312 / R1312C9: got 'NA'
Warning: Expecting numeric in J1312 / R1312C10: got 'NA'
Warning: Expecting numeric in I1317 / R1317C9: got 'NA'
Warning: Expecting numeric in J1317 / R1317C10: got 'NA'
Warning: Expecting numeric in I1318 / R1318C9: got 'NA'
Warning: Expecting numeric in J1318 / R1318C10: got 'NA'
Warning: Expecting numeric in I1319 / R1319C9: got 'NA'
Warning: Expecting numeric in J1319 / R1319C10: got 'NA'
Warning: Expecting numeric in I1320 / R1320C9: got 'NA'
Warning: Expecting numeric in J1320 / R1320C10: got 'NA'
Warning: Expecting numeric in I1321 / R1321C9: got 'NA'
Warning: Expecting numeric in J1321 / R1321C10: got 'NA'
Warning: Expecting numeric in I1322 / R1322C9: got 'NA'
Warning: Expecting numeric in J1322 / R1322C10: got 'NA'
Warning: Expecting numeric in I1323 / R1323C9: got 'NA'
Warning: Expecting numeric in J1323 / R1323C10: got 'NA'
Warning: Expecting numeric in I1324 / R1324C9: got 'NA'
Warning: Expecting numeric in J1324 / R1324C10: got 'NA'
Warning in ifelse(is.na(as.numeric(socpdb$year_measure)),
as.numeric(socpdb$yearPpub) - : NAs introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$year_measure)),
as.numeric(socpdb$yearPpub) - : NAs introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_current)),
as.numeric(socpdb$SOC_Mg_ha_current)/(socpdb$depth_current/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_current)),
as.numeric(socpdb$SOC_Mg_ha_current)/(socpdb$depth_current/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_current)),
as.numeric(socpdb$SOC_Mg_ha_current)/(socpdb$depth_current/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_current)),
as.numeric(socpdb$SOC_Mg_ha_current)/(socpdb$depth_current/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_previous)),
as.numeric(socpdb$SOC_Mg_ha_previous)/(socpdb$depth_previous/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_previous)),
as.numeric(socpdb$SOC_Mg_ha_previous)/(socpdb$depth_previous/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_previous)),
as.numeric(socpdb$SOC_Mg_ha_previous)/(socpdb$depth_previous/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb$SOC_g_kg_previous)),
as.numeric(socpdb$SOC_Mg_ha_previous)/(socpdb$depth_previous/100 * : NAs
introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb2$years_since_luc)), 10,
as.numeric(socpdb2$years_since_luc)): NAs introduced by coercion
Warning in ifelse(is.na(as.numeric(socpdb2$years_since_luc)), 10,
as.numeric(socpdb2$years_since_luc)): NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
dim(chemsprops.SOCPDB)
[1] 2416   39
## [1] 2416   39

Stocks of organic carbon in German agricultural soils (BZE_LW)

Note: For protection of data privacy, the coordinate was randomly generated within a radius of 4-km around the planned sampling point. This data is hence probably not suitable for spatial analysis, predictive soil mapping.

if(!exists("chemsprops.BZE_LW")){
  site.de <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/Germany/SITE.xlsx", sheet = 1)
  site.de$site_obsdate = format(as.Date(paste0("01-", site.de$Sampling_month, "-", site.de$Sampling_year), format="%d-%m-%Y"), "%Y-%m-%d")
  site.de.xy = site.de[,c("PointID","xcoord","ycoord")]
  ## 3104
  bze.cor = read.csv('./correlation/soil_type_correlation_BZE.csv')
  site.de$SSL_classification_name = paste0( dplyr::left_join(site.de["Specific.soil.subtype"], bze.cor, by=c("Specific.soil.subtype"="bze_subtype"), multiple = "first")$USDA_1, " / ",
                    dplyr::left_join(site.de["Specific.soil.subtype"], bze.cor, by=c("Specific.soil.subtype"="bze_subtype"), multiple = "first")$USDA_2)
  #summary(as.factor(site.de$SSL_classification_name))
  coordinates(site.de.xy) <- ~xcoord+ycoord
  proj4string(site.de.xy) <- CRS("+proj=utm +zone=32 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")
  site.de.ll <- data.frame(spTransform(site.de.xy, CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")))
  site.de$longitude_decimal_degrees = site.de.ll[,2]
  site.de$latitude_decimal_degrees = site.de.ll[,3]
  hor.de <- openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/Germany/LABORATORY_DATA.xlsx", sheet = 1)
  #hor.de = plyr::join(openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/Germany/LABORATORY_DATA.xlsx", sheet = 1), openxlsx::read.xlsx("/mnt/diskstation/data/Soil_points/Germany/HORIZON_DATA.xlsx", sheet = 1), by="PointID")
  ## 17,189 rows
  horALL.de = plyr::join(hor.de, site.de, by="PointID")
  ## Sand content [Mass-%]; grain size 63-2000µm (DIN ISO 11277)
  horALL.de$sand_tot_psa <- horALL.de$gS + horALL.de$mS + horALL.de$fS + 0.2 * horALL.de$gU
  horALL.de$silt_tot_psa <- horALL.de$fU + horALL.de$mU + 0.8 * horALL.de$gU
  ## Convert millisiemens/meter [mS/m] to microsiemens/centimeter [μS/cm, uS/cm]
  horALL.de$ec_satp = horALL.de$EC_H2O / 10
  hor.sel.de <- c("PointID", "Main.soil.type", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "Layer.upper.limit", "Layer.lower.limit", "hzn_desgn", "Soil.texture.class", "texture_lab", "Clay", "silt_tot_psa", "sand_tot_psa", "TOC", "oc_d", "TC", "TN", "ph_kcl", "pH_H2O", "pH_CaCl2", "cec_sum", "cec_nh4", "ecec", "Rock.fragment.fraction", "BD_FS", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  #summary(horALL.de$TOC) ## mean = 12.3
  #summary(horALL.de$BD_FS) ## mean = 1.41
  #summary(horALL.de$pH_H2O)
  horALL.de$oc_d = signif(horALL.de$TOC * horALL.de$BD_FS * (1-horALL.de$Rock.fragment.fraction/100), 3)
  #summary(horALL.de$oc_d)
  x.na = hor.sel.de[which(!hor.sel.de %in% names(horALL.de))]
  if(length(x.na)>0){ for(i in x.na){ horALL.de[,i] = NA } }
  chemsprops.BZE_LW <- horALL.de[,hor.sel.de]
  chemsprops.BZE_LW$source_db = "BZE_LW"
  chemsprops.BZE_LW$confidence_degree = 3
  chemsprops.BZE_LW$project_url = "https://www.thuenen.de/de/ak/"
  chemsprops.BZE_LW$citation_url = "https://doi.org/10.1002/jpln.202000113"
  chemsprops.BZE_LW = complete.vars(chemsprops.BZE_LW, sel = c("TOC", "pH_H2O", "Clay"))
  saveRDS.gz(chemsprops.BZE_LW, "/mnt/diskstation/data/Soil_points/Germany/chemsprops.BZE_LW.rds")
}
dim(chemsprops.BZE_LW)
[1] 17189    39
## [1] 17189    39

AARDEWERK-Vlaanderen-2010

if(!exists("chemsprops.Vlaanderen2010")){
  site.vl <- read.csv("/mnt/diskstation/data/Soil_points/Belgium/Vlaanderen/Aardewerk-Vlaanderen-2010_Profiel.csv")
  site.vl$site_obsdate = format(as.Date(sapply(site.vl$Profilering_Datum, function(i){strsplit(i, " ")[[1]][1]}), format="%d-%m-%Y"), "%Y-%m-%d")
  site.vl.xy = site.vl[,c("ID","Coordinaat_Lambert72_X","Coordinaat_Lambert72_Y")]
  ## 7020
  site.vl.xy = site.vl.xy[complete.cases(site.vl.xy),]
  coordinates(site.vl.xy) <- ~Coordinaat_Lambert72_X+Coordinaat_Lambert72_Y
  proj4string(site.vl.xy) <- CRS("+init=epsg:31300")
  site.vl.ll <- data.frame(spTransform(site.vl.xy, CRS("+proj=longlat +ellps=WGS84 +datum=WGS84")))
  site.vl$longitude_decimal_degrees = join(site.vl["ID"], site.vl.ll, by="ID")$coords.x1
  site.vl$latitude_decimal_degrees = join(site.vl["ID"], site.vl.ll, by="ID")$coords.x2
  site.vl$Profiel_ID = site.vl$ID
  hor.vl <- read.csv("/mnt/diskstation/data/Soil_points/Belgium/Vlaanderen/Aardewerk-Vlaanderen-2010_Horizont.csv")
  ## 42,529 rows
  horALL.vl = plyr::join(hor.vl, site.vl, by="Profiel_ID")
  horALL.vl$oc = horALL.vl$Humus*10 / 2 * 1.3
  #summary(horALL.vl$oc) ## mean = 7.8
  #summary(horALL.vl$pH_H2O)
  horALL.vl$hzn_top <- rowSums(horALL.vl[,c("Diepte_grens_boven1", "Diepte_grens_boven2")], na.rm=TRUE)/2
  horALL.vl$hzn_bot <- rowSums(horALL.vl[,c("Diepte_grens_onder1","Diepte_grens_onder2")], na.rm=TRUE)/2
  horALL.vl$sand_tot_psa <- horALL.vl$T50_100 + horALL.vl$T100_200 + horALL.vl$T200_500 + horALL.vl$T500_1000 + horALL.vl$T1000_2000
  horALL.vl$silt_tot_psa <- horALL.vl$T2_10 + horALL.vl$T10_20 + horALL.vl$T20_50
  horALL.vl$tex_psda = paste0(horALL.vl$HorizontTextuur_code1, horALL.vl$HorizontTextuur_code2)
  ## some corrupt coordinates
  horALL.vl <- horALL.vl[horALL.vl$latitude_decimal_degrees > 50.6,]
  hor.sel.vl <- c("Profiel_ID", "Bodemgroep", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", "SSL_classification_name", "labsampnum", "layer_key", "Hor_nr", "hzn_top", "hzn_bot", "Naam", "tex_psda", "texture_lab", "T0_2", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "pH_KCl", "pH_H2O", "ph_cacl2", "Sorptiecapaciteit_Totaal", "cec_nh4", "ecec", "Tgroter_dan_2000", "db_od", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = hor.sel.vl[which(!hor.sel.vl %in% names(horALL.vl))]
  if(length(x.na)>0){ for(i in x.na){ horALL.vl[,i] = NA } }
  chemsprops.Vlaanderen <- horALL.vl[,hor.sel.vl]
  chemsprops.Vlaanderen$source_db = "Vlaanderen"
  chemsprops.Vlaanderen$confidence_degree = 2
  chemsprops.Vlaanderen$project_url = "https://www.dov.vlaanderen.be"
  chemsprops.Vlaanderen$citation_url = "https://doi.org/10.1016/j.geoderma.2015.04.001"
  chemsprops.Vlaanderen = complete.vars(chemsprops.Vlaanderen, sel = c("oc", "pH_H2O", "T0_2"))
  saveRDS.gz(chemsprops.Vlaanderen, "/mnt/diskstation/data/Soil_points/Belgium/Vlaanderen/chemsprops.Vlaanderen.rds")
}
Warning in CPL_crs_from_input(x): GDAL Message 1: +init=epsg:XXXX syntax is
deprecated. It might return a CRS with a non-EPSG compliant axis order.
dim(chemsprops.Vlaanderen)
[1] 41364    39
## [1] 41364    39

Netherlands BIS-4D

  • Helfenstein, A., Mulder, V. L., Hack-ten Broeke, M. J. D., van Doorn, M., Teuling, K., Walvoort, D. J. J., and Heuvelink, G. B. M. (2024): BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands, Earth Syst. Sci. Data, 16, 2941–2970. https://doi.org/10.5194/essd-16-2941-2024

Note: Data download https://doi.org/10.4121/c90215b3-bdc6-4633-b721-4c4a0259d6dc.v4

if(!exists("chemsprops.NLBIS")){
  ## Tabular datasets of each georeferenced soil property point data are provided as separate CSV files for each soil property.
  nlbis.lst = list.files("/mnt/diskstation/data/Soil_points/Netherlands/BIS", pattern=glob2rx("*.csv.gz"), full.names = TRUE)
  nlbis.horA = vroom::vroom("/mnt/diskstation/data/Soil_points/Netherlands/BIS/tbl_cal_SOM_per.csv.gz")
  nlbis.hor = dplyr::left_join(nlbis.horA, plyr::join_all(lapply(nlbis.lst[-grep("_SOM", nlbis.lst)], function(i){vroom::vroom(gzfile(i))}), type="full", by=c("sample_id", "site_id", "hor_nr")), multiple = "first")
  #str(nlbis.hor)
  ##855,950 × 21
  ## this is relatively large lab data set - it would create imbalance in the bind, so better to trim-down
  ## limit to measurements > 1999 only
  #summary(as.factor(nlbis.hor$year))
  nlbis.hor = nlbis.hor[nlbis.hor$year>1999,]
  #plot(nlbis.hor[,c("X","Y")], pch="+", asp=1)
  ## LOI method - harmonization: https://doi.org/10.1111/ejss.12558
  #nlbis.hor$organic_carbon = nlbis.hor$SOM_per / 1.72 * 10
  #hist(log1p(nlbis.hor$SOM_per))
  nlbis.hor$organic_carbon = (0.513*nlbis.hor$SOM_per -0.047*nlbis.hor$clay_per + 0.00025*nlbis.hor$clay_per^2 )*10
  nlbis.hor$organic_carbon = ifelse(nlbis.hor$organic_carbon < 0, 0, nlbis.hor$organic_carbon)
  #summary(nlbis.hor$organic_carbon)
  nlbis.xy = terra::vect(nlbis.hor[,c("X","Y")], geom=c("X","Y"), crs="EPSG:28992")
  nlbis.ll = terra::project(nlbis.xy, "EPSG:4326")
  nlbis.hor$longitude_decimal_degrees = geom(nlbis.ll)[,"x"]
  nlbis.hor$latitude_decimal_degrees = geom(nlbis.ll)[,"y"]
  nlbis.hor$cec_nh4_ph_7 = nlbis.hor$CEC / 10
  #summary(nlbis.hor$N_tot_mgkg)
  nlbis.hor$total_nitrogen_ncs = nlbis.hor$N_tot_mgkg/1000
  #summary(nlbis.hor$d_upper)
  ##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  ##   0.000   2.907  17.442  83.267  58.140 575.581   22417 
  #summary(nlbis.hor$BD_gcm3)
  nlbis.hor$oc_d = signif(nlbis.hor$organic_carbon * nlbis.hor$BD_gcm3, 3)
  #summary(nlbis.hor$oc_d)
  #  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  #  0.00   10.25   15.20   21.95   30.90   63.80  215900  
  nlbis.name = c("site_id", "upedonid", "year", "longitude_decimal_degrees", 
               "latitude_decimal_degrees", "SSL_classification_name",  
               "sample_id", "layer_key", "hor_nr", "d_upper", "d_lower", 
              "hor", "texture_description", "texture_lab", "clay_per", "silt_per", 
              "sand_per", "organic_carbon", "oc_d", "total_carbon_ncs", "total_nitrogen_ncs", 
              "pH_KCl", "ph_h2o", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "cec_nh4_ph_7", "ecec_base_plus_aluminum", 
              "total_frag_wt_pct_gt_2_mm_ws", "BD_gcm3", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = nlbis.name[which(!nlbis.name %in% names(nlbis.hor))]
  if(length(x.na)>0){ for(i in x.na){ nlbis.hor[,i] = NA } }
  chemsprops.NLBIS = nlbis.hor[,nlbis.name]
  chemsprops.NLBIS$source_db = "Netherlands.BIS"
  chemsprops.NLBIS$confidence_degree = 4
  chemsprops.NLBIS$project_url = "https://git.wageningenur.nl/helfe001/bis-4d"
  chemsprops.NLBIS$citation_url = "https://doi.org/10.5194/essd-16-2941-2024"
  chemsprops.NLBIS = complete.vars(chemsprops.NLBIS, sel = c("organic_carbon", "pH_KCl"))
  saveRDS.gz(chemsprops.NLBIS, "/mnt/diskstation/data/Soil_points/Netherlands/chemsprops.NLBIS.rds")
##  writeVector(terra::vect(chemsprops.NLBIS, geom=c("longitude_decimal_degrees", "latitude_decimal_degrees"), crs="EPSG:4326"), "/data/wri_soil/chemsprops.NLBIS.gpkg")
}
Rows: 855950 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): BIS_tbl, BIS_type, hor
dbl (9): site_id, X, Y, hor_nr, d_upper, d_lower, d_mid, year, SOM_per
lgl (1): sample_id

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 15871 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): BIS_tbl, BIS_type, hor
dbl (9): site_id, X, Y, hor_nr, d_upper, d_lower, d_mid, year, BD_gcm3
lgl (1): sample_id

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 3815 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): BIS_tbl, BIS_type
dbl (8): site_id, X, Y, d_upper, d_lower, d_mid, year, CEC
lgl (3): sample_id, hor_nr, hor

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 631726 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): BIS_tbl, BIS_type, hor
dbl (9): site_id, X, Y, hor_nr, d_upper, d_lower, d_mid, year, clay_per
lgl (1): sample_id

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 5739 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): BIS_tbl, BIS_type
dbl (8): site_id, X, Y, d_upper, d_lower, d_mid, year, N_tot_mgkg
lgl (3): sample_id, hor_nr, hor

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 6084 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): BIS_tbl, BIS_type, hor
dbl (8): site_id, X, Y, d_upper, d_lower, d_mid, year, P_ox_mmolkg
lgl (2): sample_id, hor_nr

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 15248 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): BIS_tbl, BIS_type, hor
dbl (8): site_id, X, Y, d_upper, d_lower, d_mid, year, pH_KCl
lgl (2): sample_id, hor_nr

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 12918 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): BIS_tbl, BIS_type, hor
dbl (8): site_id, X, Y, d_upper, d_lower, d_mid, year, sand_per
lgl (2): sample_id, hor_nr

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 12912 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): BIS_tbl, BIS_type
dbl (8): site_id, X, Y, d_upper, d_lower, d_mid, year, silt_per
lgl (3): sample_id, hor_nr, hor

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Joining with `by = join_by(BIS_tbl, BIS_type, sample_id, site_id, X, Y, hor_nr, hor, d_upper, d_lower, d_mid, year)`
dim(chemsprops.NLBIS)
[1] 116204     39
## [1] 116290     39

Chilean Soil Organic Carbon database

if(!exists("chemsprops.CHLSOC")){
  chl.hor <- read.csv("/mnt/diskstation/data/Soil_points/Chile/CHLSOC/CHLSOC_v1.0.csv", stringsAsFactors = FALSE)
  #summary(chl.hor$oc)
  chl.hor$oc = chl.hor$oc*10
  #summary(chl.hor$bd)
  chl.hor$oc_d = signif(chl.hor$oc  * chl.hor$bd * (100 - ifelse(is.na(chl.hor$crf), 0, chl.hor$crf))/100, 3)
  #summary(chl.hor$oc_d)
  chl.col = c("ProfileID", "usiteid", "year", "long", "lat", "SSL_classification_name", "labsampnum", "layer_key", "layer_sequence", "top", "bottom", "hzn_desgn", "tex_psda", "texture_lab", "clay_tot_psa", "silt_tot_psa", "sand_tot_psa", "oc", "oc_d", "c_tot", "n_tot", "ph_kcl", "ph_h2o", "ph_cacl2", "cec_sum", "cec_nh4", "ecec", "crf", "bd", "ca_ext", "mg_ext", "na_ext", "k_ext", "ec_satp", "ec_12pre")
  x.na = chl.col[which(!chl.col %in% names(chl.hor))]
  if(length(x.na)>0){ for(i in x.na){ chl.hor[,i] = NA } }
  chemsprops.CHLSOC = chl.hor[,chl.col]
  chemsprops.CHLSOC$source_db = "Chilean_SOCDB"
  chemsprops.CHLSOC$confidence_degree = 4
  chemsprops.CHLSOC$project_url = "https://doi.org/10.17605/OSF.IO/NMYS3"
  chemsprops.CHLSOC$citation_url = "https://doi.org/10.5194/essd-12-457-2020"
  chemsprops.CHLSOC = complete.vars(chemsprops.CHLSOC, sel = c("oc", "bd"), coords = c("long", "lat"))
  saveRDS.gz(chemsprops.CHLSOC, "/mnt/diskstation/data/Soil_points/Chile/chemsprops.CHLSOC.rds")
}
dim(chemsprops.CHLSOC)
[1] 16903    39
## [1] 16903    39

Scotland (NSIS_1)

if(!exists("chemsprops.ScotlandNSIS1")){
  sco.xy = read.csv("/mnt/diskstation/data/Soil_points/Scotland/NSIS_10km.csv")
  coordinates(sco.xy) = ~ easting + northing
  proj4string(sco.xy) = "EPSG:27700"
  sco.ll = as.data.frame(spTransform(sco.xy, CRS("EPSG:4326")))
  sco.ll$site_obsdate = as.numeric(sapply(sco.ll$profile_da, function(x){substr(x, nchar(x)-3, nchar(x))}))
  #hist(sco.ll$site_obsdate[sco.ll$site_obsdate>1000])
  ## no points after 1990!!
  #summary(sco.ll$exch_k)
  sco.in.name = c("profile_id", "site_obsdate", "coords.x1", "coords.x2", "horz_top", "horz_botto", 
                  "horz_symb", "sample_id", "texture_ps",
                  "sand_int", "silt_int", "clay", "carbon", "nitrogen", "ph_h2o", "exch_ca", 
                  "exch_mg", "exch_na", "exch_k", "sum_cation")
  #sco.in.name[which(!sco.in.name %in% names(sco.ll))]
  sco.x = as.data.frame(sco.ll[,sco.in.name])
  #sco.x = sco.x[!sco.x$sample_id==0,]
  #summary(sco.x$carbon)
  sco.out.name = c("site_key", "site_obsdate", "longitude_decimal_degrees", "latitude_decimal_degrees", 
                     "hzn_bot", "hzn_top", "hzn_desgn", "labsampnum", "tex_psda", "sand_total", "silt_total", 
                      "clay_total", "organic_carbon", "total_nitrogen_ncs", "ph_h2o", "ca_ext",
                      "mg_ext", "na_ext", "k_ext", "sum_of_cations_cec_pH_8_2")
  ## translate values
  sco.fun.lst = as.list(rep("as.numeric(x)*1", length(sco.in.name)))
  sco.fun.lst[[which(sco.in.name=="profile_id")]] = "paste(x)"
  sco.fun.lst[[which(sco.in.name=="exch_ca")]] = "as.numeric(x)*200"
  sco.fun.lst[[which(sco.in.name=="exch_mg")]] = "as.numeric(x)*121"
  sco.fun.lst[[which(sco.in.name=="exch_k")]] = "as.numeric(x)*391"
  sco.fun.lst[[which(sco.in.name=="exch_na")]] = "as.numeric(x)*230"
  sco.fun.lst[[which(sco.in.name=="carbon")]] = "as.numeric(x)*10"
  sco.fun.lst[[which(sco.in.name=="nitrogen")]] = "as.numeric(x)*10"
  ## save translation rules:
  #write.csv(data.frame(sco.in.name, sco.out.name, unlist(sco.fun.lst)), "scotland_soilab_transvalues.csv")
  sco.soil = transvalues(sco.x, sco.out.name, sco.in.name, sco.fun.lst)
  x.na = col.names[which(!col.names %in% names(sco.soil))]
  if(length(x.na)>0){ for(i in x.na){ sco.soil[,i] = NA } }
  chemsprops.ScotlandNSIS1 = sco.soil[,col.names]
  chemsprops.ScotlandNSIS1$source_db = "ScotlandNSIS1"
  chemsprops.ScotlandNSIS1$confidence_degree = 2
  chemsprops.ScotlandNSIS1$project_url = "http://soils.environment.gov.scot/"
  chemsprops.ScotlandNSIS1$citation_url = "https://doi.org/10.5281/zenodo.4650230"
  chemsprops.ScotlandNSIS1 = complete.vars(chemsprops.ScotlandNSIS1, sel = c("organic_carbon", "ph_h2o", "clay_total"))
  saveRDS.gz(chemsprops.ScotlandNSIS1, "/mnt/diskstation/data/Soil_points/Scotland/chemsprops.ScotlandNSIS1.rds")
}
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
Warning in eval(parse(text = fun.lst[[i]])): NAs introduced by coercion
dim(chemsprops.ScotlandNSIS1)
[1] 3091   39
## [1] 3091   39

Ecoforest map of Quebec, Canada

if(!exists("chemsprops.QuebecTEX")){
  que.xy = read.csv(gzfile("/mnt/diskstation/data/Soil_points/Canada/Quebec/RawData.csv.gz"))
  #summary(as.factor(que.xy$Horizon))
  ## horizon depths were not measured - we assume 15-30 and 30-80
  que.xy$hzn_top = ifelse(que.xy$Horizon=="B", 15, 30)
  que.xy$hzn_bot = ifelse(que.xy$Horizon=="B", 30, 80)
  que.xy$site_key = que.xy$usiteid
  que.xy$latitude_decimal_degrees = que.xy$Latitude
  que.xy$longitude_decimal_degrees = que.xy$Longitude
  que.xy$hzn_desgn = que.xy$Horizon
  ## sampling year is unknown but the paper indicates 'The data come from 3 different provincial forest inventory programs... inventoried by provincial forestry authorities since 1970'
  que.xy$site_obsdate = 2000
  que.xy$sand_total = que.xy$PC_Sand
  que.xy$silt_total = que.xy$PC_Silt
  que.xy$clay_total = que.xy$PC_Clay
  x.na = col.names[which(!col.names %in% names(que.xy))]
  if(length(x.na)>0){ for(i in x.na){ que.xy[,i] = NA } }
  chemsprops.QuebecTEX = que.xy[,col.names]
  chemsprops.QuebecTEX$source_db = "QuebecTEX"
  chemsprops.QuebecTEX$confidence_degree = 4
  chemsprops.QuebecTEX$project_url = ""
  chemsprops.QuebecTEX$citation_url = "https://doi.org/10.7717/peerj.11685"
  chemsprops.QuebecTEX = complete.vars(chemsprops.QuebecTEX, sel = c("clay_total"))
  saveRDS.gz(chemsprops.QuebecTEX, "/mnt/diskstation/data/Soil_points/Canada/chemsprops.QuebecTEX.rds")
}
dim(chemsprops.QuebecTEX)
[1] 29570    39
## [1] 29570    39

Slovenian soil profile DB

if(!exists("chemsprops.Slovenia")){
  slo.xy = read_sf("/mnt/diskstation/data/Soil_points/Slovenia/PedoloskiProfili.shp")
  slo.sf = sf::st_transform(slo.xy, "epsg:4326")
  slo.df = data.frame(cbind(as.data.frame(slo.sf), st_coordinates(slo.sf)))
  slo.hor = foreign::read.dbf("/mnt/diskstation/data/Soil_points/Slovenia/Horizonti_v_PedoloskihProfilih.DBF", as.is=TRUE)
  sloALL = dplyr::left_join(slo.hor, slo.df)
  sloALL = sloALL[!is.na(sloALL$X.1),]
  ## [1] 11509    71
  #plot(sloALL[,c("X.1","Y.1")], pch="+")
  ## year of sampling
  #summary(as.factor(sloALL$LETO))
  ## Walkely-Black: K2Cr2O7/H2SO4
  sloALL$organic_carbon = ifelse(sloALL$OGLJ==0 & (sloALL$PHH==0), NA, sloALL$OGLJ) / 2 * 1.3 * 10
  sloALL$total_nitrogen_ncs = ifelse(sloALL$DUSIK==0 & (sloALL$PHH==0), NA, sloALL$DUSIK) * 10
  sloALL$ph_kcl = ifelse(sloALL$PHK < 2 | sloALL$PHK > 9.5, NA, sloALL$PHK)
  sloALL$ph_h2o = ifelse(sloALL$PHH < 2 | sloALL$PHH > 9.5, NA, sloALL$PHH)
  sloALL$ph_cacl2 = ifelse(sloALL$PHCA < 2 | sloALL$PHCA > 9.5, NA, sloALL$PHCA)
  sloALL$sum_of_cations_cec_pH_8_2 = ifelse(sloALL$S==0 & sloALL$PHH==0, NA, sloALL$S)
  #summary(as.factor(sloALL$SKELET))
  ## increadible >1000 differnt ways coarse fragments were entered!
  sloALL$total_frag_wt_pct_gt_2_mm_ws = ifelse(sloALL$SKELET=="5%", 5, 
                                        ifelse(sloALL$SKELET=="10%", 10,
                                        ifelse(sloALL$SKELET=="20%", 20, 
                                        ifelse(sloALL$SKELET=="30%", 30,
                                        ifelse(sloALL$SKELET=="40%", 40,
                                        ifelse(sloALL$SKELET=="50%", 50,
                                        ifelse(sloALL$SKELET=="60%", 60,
                                        ifelse(sloALL$SKELET=="70%", 70,
                                        ifelse(sloALL$SKELET=="5-10%", 7.5,
                                        ifelse(sloALL$SKELET=="/", 0, NA))))))))))
  sloALL$sand_total <- sloALL$PES * 0.8 + sloALL$MELJG
  sloALL$silt_total = 100 - (sloALL$sand_total + sloALL$GLINA)
  slo.name = c("ZPP", "SPP", "LETO", "X.1", "Y.1", "SSL_classification_name",  
               "LABST", "layer_key", "layer_sequence", "GLZG", "GLSP", 
              "HORIZ", "TRZ", "texture_lab", "GLINA", "silt_total", 
              "sand_total", "organic_carbon", "oc_d", "total_carbon_ncs", "total_nitrogen_ncs", 
              "ph_kcl", "ph_h2o", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "cec_nh4_ph_7", "ecec_base_plus_aluminum", 
              "total_frag_wt_pct_gt_2_mm_ws", "bulk_density_oven_dry", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = slo.name[which(!slo.name %in% names(sloALL))]
  if(length(x.na)>0){ for(i in x.na){ sloALL[,i] = NA } }
  chemsprops.Slovenia = sloALL[,slo.name]
  chemsprops.Slovenia$source_db = "Slovenia.SPDB"
  chemsprops.Slovenia$confidence_degree = 2
  chemsprops.Slovenia$project_url = "https://rkg.gov.si/vstop/"
  chemsprops.Slovenia$citation_url = "https://doi.org/10.1007/978-3-030-14066-3_6"
  chemsprops.Slovenia = complete.vars(chemsprops.Slovenia, sel = c("organic_carbon", "ph_h2o", "GLINA"), coords = c("X.1", "Y.1"))
  saveRDS.gz(chemsprops.Slovenia, "/mnt/diskstation/data/Soil_points/Slovenia/chemsprops.Slovenia.rds")
}
Field name: 'NA' changed to: 'NA.'
Joining with `by = join_by(ZPP)`
dim(chemsprops.Slovenia)
[1] 11509    39
## [1] 11509    39

Portugal INFOSOLO

  • Ramos, T. B., Horta, A., Gonçalves, M. C., Pires, F. P., Duffy, D., & Martins, J. C. (2017). The INFOSOLO database as a first step towards the development of a soil information system in Portugal. Catena, 158, 390-412. http://dx.doi.org/10.1016/j.catena.2017.07.020

Note: INFOSOLO project https://projects.iniav.pt/infosolo/

if(!exists("chemsprops.INFOSOLO")){
  port.nam = vroom::vroom("/mnt/diskstation/data/Soil_points/Portugal/description.txt", col_names = FALSE)[-c(5:6),]
  port.site = vroom::vroom("/mnt/diskstation/data/Soil_points/Portugal/soil.txt", col_names = make.names(port.nam$X2[port.nam$X3=="Soil"]))
  hor.nm.port = make.names(port.nam$X2[port.nam$X3=="Properties"])
  port.hor = vroom::vroom("/mnt/diskstation/data/Soil_points/Portugal/properties.txt", col_names = c("ID2", "ID1", hor.nm.port[-1]), na = c("", "\\N"))
  portALL = dplyr::left_join(port.hor, port.site, by = "ID1")
  ## [1] 9934   51
  #plot(portALL[,c("Long","Lat")], pch="+", asp=1)
  ## year of sampling
  #summary(as.factor(portALL$Year))
  portALL$organic_carbon = portALL$OC * 10
  ## 41 Walkley-Black
  portALL$organic_carbon[which(portALL$OC_M==41)] = portALL$organic_carbon[which(portALL$OC_M==41)] * 1.3
  portALL$oc_d = signif(portALL$organic_carbon * portALL$BD * (100 - ifelse(is.na(portALL$Coarse), 0, portALL$Coarse))/100, 3)
  #summary(portALL$oc_d)
  portALL$sand_total <- portALL$FS * 0.8 + portALL$CS
  portALL$silt_total = 100 - (portALL$sand_total + portALL$C)
  portALL$k_ext = portALL$K...28 * 391
  portALL$ca_ext = portALL$Ca * 200
  portALL$mg_ext = portALL$Mg * 121
  portALL$na_ext = portALL$Na * 230
  port.name = c("Profile_ID", "ID1", "Year", "Long", "Lat", "SSL_classification_name",  
               "labsampnum", "layer_key", "layer_sequence", "Hor_top", "Hor_bot", 
              "Hor_name", "texture_description", "texture_lab", "C", "silt_total", 
              "sand_total", "organic_carbon", "oc_d", "total_carbon_ncs", "N", 
              "ph_kcl", "pH", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "CEC", "ecec_base_plus_aluminum", 
              "Coarse", "BD", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")
  x.na = port.name[which(!port.name %in% names(portALL))]
  if(length(x.na)>0){ for(i in x.na){ portALL[,i] = NA } }
  chemsprops.PT.INFOSOLO = portALL[,port.name]
  chemsprops.PT.INFOSOLO$source_db = "Portugal.INFOSOLO"
  chemsprops.PT.INFOSOLO$confidence_degree = 2
  chemsprops.PT.INFOSOLO$project_url = "https://projects.iniav.pt/infosolo/"
  chemsprops.PT.INFOSOLO$citation_url = "http://dx.doi.org/10.1016/j.catena.2017.07.020"
  chemsprops.PT.INFOSOLO = complete.vars(chemsprops.PT.INFOSOLO, sel = c("organic_carbon", "pH", "C"), coords = c("Long", "Lat"))
  saveRDS.gz(chemsprops.PT.INFOSOLO, "/mnt/diskstation/data/Soil_points/Portugal/chemsprops.PT.INFOSOLO.rds")
}
Rows: 60 Columns: 5
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (4): X2, X3, X4, X5
dbl (1): X1

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 3461 Columns: 16
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (10): Profile_ID, Soil, Qualifier.2, Qualifier.3, WRB, Parent.Material, ...
dbl  (6): ID1, Long, Lat, Year, Qualifier.1, Land.Use

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
New names:
Rows: 9934 Columns: 36
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr  (1): Hor_name
dbl (35): ID2, ID1, Hor_top, Hor_bot, Coarse, CS, FS, Si, C, Texture_M, BD, ...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(chemsprops.PT.INFOSOLO)
[1] 9934   39
## [1] 9934   39

Multisite SOC evaluation

Note: This is relatively small data set focused on 8 commercial fields / farms.

if(!exists("chemsprops.Potash2023")){
  multisite.xy = read.csv("/mnt/landmark/Soil_points/USA/Multi_site_evaluation/locations.csv")
  multisite.lb = read.csv("/mnt/landmark/Soil_points/USA/Multi_site_evaluation/measurements.csv")
  multisite.lb$oc_d = round(as.numeric(multisite.lb$SOCc) * 10 * multisite.lb$BD, 2)
  #summary(multisite.lb$oc_d)
  multisite.lb$organic_carbon = multisite.lb$SOCc*10
  multisite.lb$site_key = multisite.lb$location_id
  multisite.lb$bulk_density_oven_dry = multisite.lb$BD
  multisite.lb$site_obsdate = 2021
  multisite.lb$hzn_top = multisite.lb$sample_depth_min
  multisite.lb$hzn_bot = multisite.lb$sample_depth_max
  multisite.xy$longitude_decimal_degrees = multisite.xy$X
  multisite.xy$latitude_decimal_degrees = multisite.xy$Y
  multisite.lb$longitude_decimal_degrees = plyr::join(multisite.lb["location_id"], multisite.xy, match = "first")$longitude_decimal_degrees
  multisite.lb$latitude_decimal_degrees = plyr::join(multisite.lb["location_id"], multisite.xy, match = "first")$latitude_decimal_degrees
  x.na = col.names[which(!col.names %in% names(multisite.lb))]
  if(length(x.na)>0){ for(i in x.na){ multisite.lb[,i] = NA } }
  chemsprops.Potash2023 = multisite.lb[,col.names]
  chemsprops.Potash2023$source_db = "Potash_et_al_2023"
  chemsprops.Potash2023$project_url = "https://sustainability.illinois.edu/new-method-shows-promise-for-accurate-efficient-soil-carbon-estimates/"
  chemsprops.Potash2023$citation_url = "https://doi.org/10.1016/j.geoderma.2023.116587"
  saveRDS.gz(chemsprops.Potash2023, "/mnt/diskstation/data/Soil_points/USA/Multi_site_evaluation/chemsprops.Potash2023.rds")
}
Joining by: location_id
Joining by: location_id
dim(chemsprops.Potash2023)
[1] 3977   39
## [1] 3977   39

GLANCE pseudo-samples

  • Stanimirova, R., Tarrio, K., Turlej, K., McAvoy, K., Stonebrook, S., Hu, K. T., … & Friedl, M. A. (2023). A global land cover training dataset from 1984 to 2020. Scientific Data, 10(1), 879. https://doi.org/10.1038/s41597-023-02798-5

Note: Pseudo-observations based on GLANCE points; use only class “6” which is sand surface;

if(!exists("chemsprops.GLANCE")){
  ## 0 soil organic carbon + 99% sand content (deserts)
  bare = read_sf("/data/wri_soil/bu_glance_training_dataV1.gpkg")
  ## Level 2 land cover value (integer): 1 (Water), 2 (Ice/snow), 3 (Developed), 4 (Soil), 
  ## 5 (Rock), 6 (Beach/sand), 7 (Deciduous), 8 (Evergreen), 9 (Mixed), 10 (Shrub), 
  ## 11 (Grassland), 12 (Agriculture), and 13 (Moss/lichen). NaN values present.
  bare = bare[(bare$Glance_Class_ID_level2==5|bare$Glance_Class_ID_level2==6),]
  #dim(bare)
  #[1] 13057    21
  #summary(as.factor(bare$Glance_Class_ID_level2))
  #    5    6 
  # 9972 3085  
  #bare = bare[bare$Glance_Class_ID_level2==6,]
  ## Not all "Rock" classes are surface rock - needs visual check
  g100km = terra::vect("/data/CCI_LandCover/tiles_GH_100km_land.gpkg")
  ov.g100km = extract(g100km, terra::project(terra::vect(bare), crs(g100km)))
  ov.g100km$Glance_ID = bare$Glance_ID
  #summary(as.factor(ov.g100km$ID))
  ## randomly subset up to max 30 points per 100x100km tile
  ov.g100km.s <- ov.g100km[,c("Glance_ID", "ID")] %>% group_by(ID) %>% slice(sample(n(), min(30, n()))) %>% ungroup()
  ## 6878 points in total
  #summary(as.factor(ov.g100km.s$ID))
  #plot(bare["Dataset_Code"])
  #write_sf(bare, "/data/wri_soil/bu_glance_sand_barerock_V1.gpkg")
  bare.s = bare[bare$Glance_ID %in% ov.g100km.s$Glance_ID,]
  #plot(bare.s["Glance_Class_ID_level2"])
  #str(bare.s)
  ## 6,878 points
  ## Add world peaks (http://www.peaklist.org/ultras.html)
  pks = read_sf("/data/CCI_LandCover/ultrasgoogle052007.KMZ")
  pks.df = data.table::data.table(cbind(as.data.frame(pks), st_coordinates(pks)))
  ## 1524 world peaks
  pks.df$Start_Year = 2000
  pks.df$End_Year = 2022
  pks.df$Glance_ID = paste0("ultras_", 1:nrow(pks.df))
  pks.df$Lon = pks.df$X
  pks.df$Lat = pks.df$Y
  pks.df$Glance_Class_ID_level2 = 5
  ## bind GLANCE and Ultras
  sel.glnc = c("Glance_ID", "Lon", "Lat", "Start_Year", "End_Year", "Glance_Class_ID_level2")
  bare.df = cbind(as.data.frame(bare.s)[,sel.glnc], st_coordinates(bare.s))
  bare.df = data.table::data.table(dplyr::bind_rows(bare.df, as.data.frame(pks.df)[,names(bare.df)]))
  #View(bare.df)
  ## Extend to start end periods:
  bare.ex = as.data.frame(data.table::setDT(bare.df)[ , list(site_key=Glance_ID, Glance_Class_ID_level2=Glance_Class_ID_level2, X=X, Y=Y, longitude_decimal_degrees=Lon, latitude_decimal_degrees=Lat, site_obsdate = seq(Start_Year, End_Year)), by = 1:nrow(bare.df)])
  #dim(bare.ex)
  ## 151320 spacetime points!
  #write.csv(bare.ex, gzfile("/data/wri_soil/bare_soil_pnts.csv.gz"))
  ## Remove all points that are NOT bare areas on the most detailed GLC (30m resolution)
  ov.bare.ex = terra::extract(
    terra::rast("/data/CCI_LandCover/lc_glc.fcs30d_c_30m_s_20220101_20221231_go_epsg.4326_v20231026.tif"), 
          terra::vect(bare.ex, geom=c("longitude_decimal_degrees", "latitude_decimal_degrees"), crs="EPSG:4326"))
  bare.ex = bare.ex[ov.bare.ex[,2] %in% c(190,200,201,202,220),]
  #str(bare.ex)
  ## 80652 spacetime pnts 
  #str(levels(as.factor(bare.ex$site_key)))
  ## 4680 unique locations
  ## insert zeros for all nutrients except for the once we are not sure:
  ## http://www.decodedscience.org/chemistry-sahara-sand-elements-dunes/45828
  bare.ex$oc_d = 0
  bare.ex$organic_carbon = 0
  bare.ex$total_carbon_ncs = 0
  bare.ex$total_nitrogen_ncs = 0
  bare.ex$k_ext = ifelse(bare.ex$Glance_Class_ID_level2==6, 0, NA)
  bare.ex$mg_ext = ifelse(bare.ex$Glance_Class_ID_level2==6, 0, NA)
  bare.ex$clay_total = ifelse(bare.ex$Glance_Class_ID_level2==6, 0, NA)
  bare.ex$sand_total = ifelse(bare.ex$Glance_Class_ID_level2==6, 100, NA)
  bare.ex$silt_total = ifelse(bare.ex$Glance_Class_ID_level2==6, 0, NA)
  bare.ex$bulk_density_oven_dry = ifelse(bare.ex$Glance_Class_ID_level2==6, 1.6, NA)
  bare.ex$source_db = "GLANCE"
  bare.ex$hzn_top = 0
  bare.ex$hzn_bot = 30
  bare.ex$source_db = "GLanCE.points"
  bare.ex$confidence_degree = 4
  x.na = col.names[which(!col.names %in% names(bare.ex))]
  if(length(x.na)>0){ for(i in x.na){ bare.ex[,i] = NA } }
  chemsprops.SIM = bare.ex[,col.names]
  chemsprops.SIM$project_url = "https://doi.org/10.34911/rdnt.x4xfh3"
  chemsprops.SIM$citation_url = "https://doi.org/10.1038/s41597-023-02798-5"
  saveRDS.gz(chemsprops.SIM, "/mnt/diskstation/data/Soil_points/INT/chemsprops.SIM.rds")
}
dim(chemsprops.SIM)
[1] 80604    39
## [1] 80652    39

Other potential large soil profile DBs of interest:

  • Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., … & Chen, D. (2013). A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 5(2), 212-224. https://doi.org/10.1002/jame.20026
  • Salković, E., Djurović, I., Knežević, M., Popović-Bugarin, V., & Topalović, A. (2018). Digitization and mapping of national legacy soil data of Montenegro. Soil and Water Research, 13(2), 83-89. https://doi.org/10.17221/81/2017-SWR
  • Canadian Soil Organic Carbon Database (CSOCD) as described in: Bhatti, J. S., Apps, M. J., & Tarnocai, C. (2002). Estimates of soil organic carbon stocks in central Canada using three different approaches. Canadian Journal of Forest Research, 32(5), 805–812. doi:10.1139/x01-122

Bind all datasets

Bind and clean-up

ds.n = ls(pattern=glob2rx("chemsprops.*"))
## 49 data sets
nm.l = lapply(ds.n, function(i){ names(get(i)) })
#x = lapply(nm.l, length)
nm.df = data.frame(do.call(rbind, nm.l))
nm.df$data.set = ds.n
#write.csv(nm.df, "/mnt/diskstation/data/Soil_points/chemsprops.validate_column.names.csv")
tot_sprops = dplyr::bind_rows(lapply(ds.n, function(i){ mutate_all(setNames(get(i), col.names), as.character) }))
## convert to numeric:
for(j in c("longitude_decimal_degrees", "latitude_decimal_degrees", "layer_sequence", 
           "hzn_top", "hzn_bot", "clay_total", "silt_total", 
              "sand_total", "organic_carbon", "oc_d", "total_carbon_ncs", "total_nitrogen_ncs", 
              "ph_kcl", "ph_h2o", "ph_cacl2", 
              "sum_of_cations_cec_pH_8_2", "cec_nh4_ph_7", "ecec_base_plus_aluminum", 
              "total_frag_wt_pct_gt_2_mm_ws", "bulk_density_oven_dry", "ca_ext", "mg_ext", 
              "na_ext", "k_ext", "ec_water_extractable", "ec_predict_one_to_two")){
  tot_sprops[,j] = as.numeric(tot_sprops[,j])
}
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
Warning: NAs introduced by coercion
#head(tot_sprops)

Clean up typos and physically impossible values:

tex.rm = rowSums(tot_sprops[,c("clay_total", "silt_total", "sand_total")])
summary(tex.rm)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
-2997.0   100.0   100.0   100.2   100.0  2997.0  564826 
for(j in c("clay_total", "silt_total", "sand_total", "total_frag_wt_pct_gt_2_mm_ws")){
  tot_sprops[,j] = ifelse(tot_sprops[,j]>100|tot_sprops[,j]<0, NA, tot_sprops[,j])
  tot_sprops[,j] = ifelse(tex.rm<99|is.na(tex.rm)|tex.rm>101, NA, tot_sprops[,j])
}
for(j in c("ph_h2o","ph_kcl","ph_cacl2")){
  tot_sprops[,j] = ifelse(tot_sprops[,j]>12|tot_sprops[,j]<2, NA, tot_sprops[,j])
}
#hist(tot_sprops$db_od)
for(j in c("bulk_density_oven_dry")){
  tot_sprops[,j] = ifelse(tot_sprops[,j]>2.4|tot_sprops[,j]<0.03, NA, tot_sprops[,j])
}
#hist(tot_sprops$oc)
for(j in c("organic_carbon")){
  tot_sprops[,j] = ifelse(tot_sprops[,j]>800|tot_sprops[,j]<0, NA, tot_sprops[,j])
}

Fill-in the missing depths:

## soil layer depth (middle)
tot_sprops$hzn_depth = tot_sprops$hzn_top + (tot_sprops$hzn_bot-tot_sprops$hzn_top)/2
summary(is.na(tot_sprops$hzn_depth))
   Mode   FALSE    TRUE 
logical 1550823   33306 
## 33199
## Note: large number of horizons without a depth
tot_sprops = tot_sprops[!is.na(tot_sprops$hzn_depth),]
#quantile(tot_sprops$hzn_depth, c(0.01,0.99), na.rm=TRUE)
tot_sprops$hzn_depth = ifelse(tot_sprops$hzn_depth<0, 10, ifelse(tot_sprops$hzn_depth>800, 800, tot_sprops$hzn_depth))
#hist(tot_sprops$hzn_depth, breaks=45)

Summary number of points per data source:

summary(as.factor(tot_sprops$source_db))
             AfSIS1              AfSPDB     Alaska_interior              BZE_LW 
               4369               68794                4011               17189 
        Canada_CUFS         Canada_NPDB    Canada_subarctic       Chilean_SOCDB 
              15873               50060                1381               16887 
        China_SOTER               CIFOR           CostaRica Croatian_Soil_Pedon 
               5115                 577                2037                5757 
      CSIRO_NatSoil        Ecuador_HESD                FEBR                FRED 
              89645               30167               24353               12758 
         GEMAS_2009       GLanCE.points               GROOT    Guatemala_GTMSOC 
               4131               80604               16271                 910 
          Iran_SPDB               ISCND                ISDA          ISRIC_WISE 
               4859                4114               49225               37443 
            LandPKS          LUCAS_2009          LUCAS_2015          LUCAS_2018 
             165044               21272               21859               18982 
        MangrovesDB         MexicoINEGI            NAMSOTER               NCSCD 
               7986               16820                2943                7348 
    Netherlands.BIS   Portugal.INFOSOLO   Potash_et_al_2023          PRONASOLOS 
             116204                9934                3977               32615 
          QuebecTEX        Russia_EGRPR       ScotlandNSIS1              SISLAC 
              29570                4506                3091               92121 
      Slovenia.SPDB              SOCPDB               SoDaH        SoilHealthDB 
              11509                2416               30559                5050 
               SRDB           USDA_NCSS            USGS.NGS          Vlaanderen 
               3337              344756                9399               41364 
   WHRC_remnant_SOC 
               1631 

Add unique row identifier

tot_sprops$uuid = openssl::md5(make.unique(paste("OpenLandMap", tot_sprops$site_key, tot_sprops$layer_sequence, sep="_")))

Add unique location based on the Open Location Code:

tot_sprops$olc_id = olctools::encode_olc(tot_sprops$latitude_decimal_degrees, tot_sprops$longitude_decimal_degrees, 11)
length(levels(as.factor(tot_sprops$olc_id)))
[1] 343737
## 343814
tot_sprops.pnts = tot_sprops[!duplicated(tot_sprops$olc_id),c("site_key", "source_db", "longitude_decimal_degrees", "latitude_decimal_degrees", "site_obsdate", "olc_id", "project_url", "citation_url")]
coordinates(tot_sprops.pnts) <- ~ longitude_decimal_degrees + latitude_decimal_degrees
proj4string(tot_sprops.pnts) <- "EPSG:4326"

Density of points per 100 x 100 km grid (IGH projection):

g1 = terra::vect("/mnt/diskstation/data/Soil_points/tiles_GH_100km_land.gpkg")
ov.g1 = terra::extract(g1["ID"], terra::project(terra::vect(tot_sprops.pnts), crs(g1)))
g1.c = summary(as.factor(ov.g1$ID), maxsum = length(levels(as.factor(ov.g1$ID))))
g1.df = data.frame(count=g1.c, ID=attr(g1.c, "names"))
g1$count = dplyr::left_join(data.frame(ID=g1$ID), g1.df)$count 
#plot(g1["count"])
#writeVector(g1["count"], "/data/dev/tiles_GH_100km_pnt.dens.gpkg", overwrite=TRUE)

Density of points based on 100 by 100 km blocks in IGH projection.

Remove points falling in the sea or similar:

#mask = terra::rast("/mnt/diskstation/data/LandGIS/layers250m/lcv_landmask_esacci.lc.l4_c_250m_s0..0cm_2000..2015_v1.0.tif")
mask = terra::rast("/data/CCI_LandCover/land.cover_copernicus_c_100m_s_20150101_20151231_go_epsg.4326_v3.0.1.tif")
#ov.sprops <- terra::extract(mask, terra::vect(tot_sprops.pnts)) ## TAKES 10 secs
#summary(as.factor(ov.sprops[,2]))
#if(sum(is.na(ov.sprops[,2]) | ov.sprops[,2]==200)>0){
#  rem.lst = which(is.na(ov.sprops[,2]) | ov.sprops[,2]==200)
#  rem.sp = tot_sprops.pnts$site_key[rem.lst]
#  tot_sprops.pnts = tot_sprops.pnts[-rem.lst,]
#}
## final number of unique spatial locations:
nrow(tot_sprops.pnts)
[1] 343737
## 343814

Histogram plots

Have in mind that some datasets only represent top-soil (e.g. LUCAS) while other cover the whole soil depth, hence higher mean values for some regions (Europe) should be considered within the context of diverse soil depths.

library(ggplot2)
ggplot(tot_sprops, aes(x=source_db, y=log1p(organic_carbon))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 426670 rows containing non-finite outside the scale range
(`stat_boxplot()`).

sel.db = c("ISRIC_WISE", "Canada_CUFS", "USDA_NCSS", "AfSPDB", "Canada_NPDB", "PRONASOLOS", "CSIRO_NatSoil", "Netherlands.BIS")
openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db,], x = "hzn_depth", y = "organic_carbon", method = "hexbin", 
  col = "increment", type = "source_db", log.x = TRUE, log.y=TRUE, ylab="SOC [g/kg]", xlab="depth in cm")

Note: Canada dataset also shows SOC content for peatlands.

ggplot(tot_sprops, aes(x=source_db, y=bulk_density_oven_dry)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 1281894 rows containing non-finite outside the scale range
(`stat_boxplot()`).

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db,], x = "organic_carbon", y = "bulk_density_oven_dry", method = "hexbin", 
                     col = "increment", type = "source_db", log.x=TRUE, ylab="Bulk density", xlab="SOC [g/kg]")

ggplot(tot_sprops, aes(x=source_db, y=log1p(oc_d))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 1231342 rows containing non-finite outside the scale range
(`stat_boxplot()`).

sel.db0 = c("ISRIC_WISE", "Canada_CUFS", "USDA_NCSS", "AfSPDB", "PRONASOLOS", "CSIRO_NatSoil")
openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db0,], x = "organic_carbon", y = "oc_d", method = "hexbin", 
                     col = "increment", type = "source_db", log.x=TRUE, log.y=TRUE, xlab="SOC [g/kg]", ylab="SOC [kg/m3]")

Note: SOC (%) and SOC density (kg/m3) are almost linear relationship (curving toward fixed value), except for organic soils (especially litter) where relationship is slightly shifted.

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db0,], x = "organic_carbon", 
                     y = "total_nitrogen_ncs", method = "hexbin", 
                     col = "increment", type = "source_db", log.x=TRUE, log.y=TRUE, 
                     xlab="SOC [g/kg]", ylab="N total [g/kg]")

ggplot(tot_sprops, aes(x=source_db, y=ph_h2o)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 737396 rows containing non-finite outside the scale range
(`stat_boxplot()`).

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% c("ISRIC_WISE", "USDA_NCSS", "AfSPDB", "CSIRO_NatSoil", "PRONASOLOS"),], x = "ph_kcl", y = "ph_h2o", method = "hexbin", 
                     col = "increment", type = "source_db", xlab="soil pH KCl", ylab="soil pH H2O")

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db0,], x = "hzn_depth", y = "ph_h2o", method = "hexbin", 
                     col = "increment", type = "source_db", log.x = TRUE, log.y=TRUE, ylab="soil pH H2O", xlab="depth in cm")

Note: there seems to be no apparent correlation between soil pH and soil depth.

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% c("ISRIC_WISE", "USDA_NCSS", "AfSPDB", "PRONASOLOS", "Canada_NPDB"),], x = "ph_h2o", y = "sum_of_cations_cec_pH_8_2", method = "hexbin", 
                     col = "increment", type = "source_db", log.y=TRUE, ylab="CEC", xlab="soil pH H2O")

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db0,], x = "ph_h2o", y = "organic_carbon", method = "hexbin",  
                     col = "increment", type = "source_db", log.y=TRUE, ylab="SOC [g/kg]", xlab="soil pH H2O")

ggplot(tot_sprops, aes(x=source_db, y=clay_total)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 581776 rows containing non-finite outside the scale range
(`stat_boxplot()`).

openair::scatterPlot(tot_sprops[tot_sprops$source_db %in% sel.db0,], y = "clay_total", x = "sand_total", method = "hexbin",  
                     col = "increment", type = "source_db", ylab="clay %", xlab="sand %")

ggplot(tot_sprops, aes(x=source_db, y=log1p(sum_of_cations_cec_pH_8_2))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning in log1p(sum_of_cations_cec_pH_8_2): NaNs produced
Warning: Removed 1111330 rows containing non-finite outside the scale range
(`stat_boxplot()`).

ggplot(tot_sprops, aes(x=source_db, y=log1p(total_nitrogen_ncs))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning in log1p(total_nitrogen_ncs): NaNs produced
Warning: Removed 1005732 rows containing non-finite outside the scale range
(`stat_boxplot()`).

ggplot(tot_sprops, aes(x=source_db, y=log1p(k_ext))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning in log1p(k_ext): NaNs produced
Warning: Removed 898720 rows containing non-finite outside the scale range
(`stat_boxplot()`).

ggplot(tot_sprops, aes(x=source_db, y=log1p(ec_water_extractable))) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 1401706 rows containing non-finite outside the scale range
(`stat_boxplot()`).

sprops_yrs = tot_sprops[!is.na(tot_sprops$site_obsdate),c("site_obsdate", "source_db", "organic_carbon")]
sprops_yrs$year = as.numeric(substr(x=sprops_yrs$site_obsdate, 1, 4))
Warning: NAs introduced by coercion
sprops_yrs$year = ifelse(sprops_yrs$year <1960, NA, ifelse(sprops_yrs$year>2024, NA, sprops_yrs$year))
ggplot(sprops_yrs, aes(x=source_db, y=year)) + geom_boxplot() + theme(axis.text.x = element_text(angle = 90, hjust = 1))
Warning: Removed 159248 rows containing non-finite outside the scale range
(`stat_boxplot()`).

openair::scatterPlot(sprops_yrs[sprops_yrs$source_db %in% c(sel.db0, "Canada_NPDB", "SoDaH"),], y = "organic_carbon", x = "year", method = "hexbin",  
                     col = "increment", type = "source_db", log.y=TRUE, ylab="SOC [g/kg]", xlab="Sampling year")

Convert to wide format

Add layer_sequence where missing since this is needed to be able to convert to wide format:

#summary(tot_sprops$layer_sequence)
tot_sprops$dsiteid = paste(tot_sprops$source_db, tot_sprops$site_key, tot_sprops$site_obsdate, sep="_")
if(!exists("l.s1")){
  library(dplyr)
  ## Note: takes >1 mins
  l.s1 <- tot_sprops[,c("dsiteid","hzn_depth")] %>% group_by(dsiteid) %>% mutate(layer_sequence.f = data.table::frank(hzn_depth, ties.method = "first"))
  tot_sprops$layer_sequence.f = ifelse(is.na(tot_sprops$layer_sequence), l.s1$layer_sequence.f, tot_sprops$layer_sequence)
  tot_sprops$layer_sequence.f = ifelse(tot_sprops$layer_sequence.f>6, 6, tot_sprops$layer_sequence.f)
}

Convert long table to wide table format so that each depth gets unique column (note: the most computational / time-consuming step usually):

if(!exists("tot_sprops.w")){
  library(data.table)
  tot_sprops.w = data.table::dcast( as.data.table(tot_sprops), 
                formula = olc_id ~ layer_sequence.f, 
                value.var = c("uuid", hor.names[-which(hor.names %in% c("site_key", "layer_sequence"))]), 
                ## "labsampnum", "hzn_desgn", "tex_psda" 
                #fun=function(x){ mean(x, na.rm=TRUE) }, 
                ## Note: does not work for characters
                fun=function(x){ x[1] },
                verbose = FALSE)
  ## remove "0" layers added automatically but containing no values
  tot_sprops.w = tot_sprops.w[,grep("*_0$", colnames(tot_sprops.w)):=NULL]
}

Attaching package: 'data.table'
The following object is masked from 'package:terra':

    shift
The following objects are masked from 'package:lubridate':

    hour, isoweek, mday, minute, month, quarter, second, wday, week,
    yday, year
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
tot_sprops_w.pnts = tot_sprops.pnts
tot_sprops_w.pnts@data = plyr::join(tot_sprops.pnts@data, tot_sprops.w)
Joining by: olc_id

Write all soil profiles using a wide format:

sel.rm.pnts  <- tot_sprops_w.pnts$source_db=="LUCAS_2009" | tot_sprops_w.pnts$source_db=="LUCAS_2015" | tot_sprops_w.pnts$source_db=="LUCAS_2018" | tot_sprops_w.pnts$site_key %in% mng.rm ## | tot_sprops_w.pnts$site_key %in% rem.sp
out.gpkg = "/mnt/diskstation/data/Soil_points/sol_chem.pnts_horizons.gpkg"
#unlink(out.gpkg)
if(!file.exists(out.gpkg)){
  sf::st_write(st_as_sf(tot_sprops_w.pnts), out.gpkg, "sol_chem.pnts_horizons", driver="GPKG", append=FALSE)
  sf::st_write(st_as_sf(tot_sprops_w.pnts[!sel.rm.pnts,]), out.gpkg, "sol_chem.pnts_horizons", driver="GPKG")
}

Save RDS files

Remove points that are not allowed to be distributed publicly:

sel.rm  <- tot_sprops$source_db=="LUCAS_2009" | tot_sprops$source_db=="LUCAS_2015" | tot_sprops$source_db=="LUCAS_2018" | tot_sprops$site_key %in% mng.rm # | tot_sprops$site_key %in% rem.sp
tot_sprops.s = tot_sprops[!sel.rm,] 

Plot in Goode Homolozine projection and save final objects:

if(!file.exists("./img/sol_chem.pnts_sites.png")){
  tot_sprops.pnts_sf <- st_as_sf(tot_sprops.pnts[1], crs=4326)
  plot_gh(tot_sprops.pnts_sf, out.pdf="./img/sol_chem.pnts_sites.pdf")
  ## extremely slow --- takes 15mins
  system("pdftoppm ./img/sol_chem.pnts_sites.pdf ./img/sol_chem.pnts_sites -png -f 1 -singlefile")
  system("convert -crop 1280x575+36+114 ./img/sol_chem.pnts_sites.png ./img/sol_chem.pnts_sites.png")
}

Soil profiles and soil samples with chemical and physical properties global compilation.

Save final analysis-ready objects:

#saveRDS.gz(tot_sprops.s, "./out/rds/sol_chem.pnts_horizons.rds")
saveRDS.gz(tot_sprops, "/mnt/diskstation/data/Soil_points/sol_chem.pnts_horizons.rds")
saveRDS.gz(tot_sprops.pnts, "/mnt/diskstation/data/Soil_points/sol_chem.pnts_sites.rds")
#library(farff)
#writeARFF(tot_sprops.s, "./out/arff/sol_chem.pnts_horizons.arff", overwrite = TRUE)
## compressed CSV
#write.csv(tot_sprops.s, file=gzfile("./out/csv/sol_chem.pnts_horizons.csv.gz"))
## regression matrix:
#saveRDS.gz(rm.sol, "./out/rds/sol_chem.pnts_horizons_rm.rds")

Save temp object:

save.image.pigz(file="soilchem.RData")