6 References
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press.
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., … Jones, Z. M. (2016). mlr: Machine Learning in R. The Journal of Machine Learning Research, 17(1), 5938–5942. Retrieved from https://jmlr.org/papers/v17/15-066.html
Bivand, R., Pebesma, E., & Rubio, V. (2013). Applied Spatial Data Analysis with R (2nd ed., p. 401). Heidelberg: Springer.
Böhner, J., Blaschke, T., & Montanarella, L. (Eds.). (2008). SAGA — Seconds Out (Vol. 19, p. 113). Hamburg: Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie.
Brus, Dick J. (2015). Balanced sampling: A versatile sampling approach for statistical soil surveys. Geoderma, 253, 111–121. doi:10.1016/j.geoderma.2015.04.009
Brus, D. J. (2019). Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma, 338, 464–480. doi:10.1016/j.geoderma.2018.07.036
Brus, D. J. (2021). Spatial Sampling with R (p. 544). London: Taylor & Francis.
Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for validation of digital soil maps. European Journal of Soil Science, 62(3), 394–407. doi:10.1111/j.1365-2389.2011.01364.x
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., … Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007. doi:10.5194/gmd-8-1991-2015
Gasch, C. K., Hengl, T., Gräler, B., Meyer, H., Magney, T. S., & Brown, D. J. (2015). Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+ T: The Cook Agronomy Farm data set. Spatial Statistics, 14, 70–90. doi:10.1016/j.spasta.2015.04.001
Goerg, G. M. (2013). LICORS: Light Cone Reconstruction of States - Predictive State Estimation From Spatio-Temporal Data. CRAN. Retrieved from https://CRAN.R-project.org/package=LICORS
Grafström, A., Saarela, S., & Ene, L. T. (2014). Efficient sampling strategies for forest inventories by spreading the sample in auxiliary space. Canadian Journal of Forest Research, 44(10), 1156–1164. doi:10.1139/cjfr-2014-0202
Hastie, T. J., Tibshirani, R. J., & Friedman, J. J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag New York. Retrieved from https://hastie.su.domains/ElemStatLearn/printings/ESLII_print10.pdf
Hengl, T., & MacMillan, R. A. (2019). Predictive soil mapping with R (p. 370). Wageningen: OpenGeoHub Foundation. Retrieved from https://soilmapper.org
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518. doi:10.7717/peerj.5518
Hengl, T., Rossiter, D. G., & Stein, A. (2004). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, 41(8), 1403–1422. doi:10.1071/SR03005
Hengl, T., Roudier, P., Beaudette, D., & Pebesma, E. (2015). plotKML: Scientific visualization of spatio-temporal data. Journal of Statistical Software, 63(5), 1–25. doi:10.18637/jss.v063.i05
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 810, p. 595). Springer.
Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. CRC Press.
Lu, B., & Hardin, J. (2021). A unified framework for random forest prediction error estimation. Journal of Machine Learning Research, 22(8), 1–41. Retrieved from http://jmlr.org/papers/v22/18-558.html
Ma, T., Brus, D. J., Zhu, A.-X., Zhang, L., & Scholten, T. (2020). Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps. Geoderma, 370, 114366. doi:10.1016/j.geoderma.2020.114366
Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1-2), 138–152. doi:10.1016/j.geoderma.2009.10.007
Malone, B. P., Minansy, B., & Brungard, C. (2019). Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ, 7, e6451. doi:10.7717/peerj.6451
Meyer, H., & Pebesma, E. (2021). Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution, 12(9), 1620–1633. doi:10.1111/2041-210X.13650
Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101, 1–9. doi:10.1016/j.envsoft.2017.12.001
Minasny, B., & McBratney, A. B. (2006). A conditioned latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388. doi:10.1016/j.cageo.2005.12.009
Pohjankukka, J., Pahikkala, T., Nevalainen, P., & Heikkonen, J. (2017). Estimating the prediction performance of spatial models via spatial k-fold cross validation. International Journal of Geographical Information Science, 31(10), 2001–2019. doi:10.1080/13658816.2017.1346255
Polley, E. C., & Van Der Laan, M. J. (2010). Super learner in prediction (pp. 1–19). U.C. Berkeley Division of Biostatistics.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., … Thuiller, W. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. doi:10.1111/ecog.02881
Roudier, P. (2021). clhs: a R package for conditioned Latin hypercube sampling. CRAN. Retrieved from https://CRAN.R-project.org/package=clhs
Roudier, Pierre, Beaudette, D., & Hewitt, A. (2012). A conditioned latin hypercube sampling algorithm incorporating operational constraints. In Digital soil assessments and beyond (pp. 227–231). London: CRC Press. doi:10.1201/b12728
Royle, J. A., Chandler, R. B., Yackulic, C., & Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 3(3), 545–554. doi:10.1111/j.2041-210X.2011.00182.x
Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Chapman & Hall/CRC.
Shields, M. D., & Zhang, J. (2016). The generalization of latin hypercube sampling. Reliability Engineering & System Safety, 148, 96–108. doi:10.1016/j.ress.2015.12.002
Stumpf, F., Schmidt, K., Goebes, P., Behrens, T., Schönbrodt-Stitt, S., Wadoux, A., … Scholten, T. (2017). Uncertainty-guided sampling to improve digital soil maps. Catena, 153, 30–38. doi:10.1016/j.catena.2017.01.033
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed., p. 481). New York: Springer-Verlag.
Wadoux, A. M. J.-C., Heuvelink, G. B. M., de Bruin, S., & Brus, D. J. (2021). Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling, 457, 109692. doi:10.1016/j.ecolmodel.2021.109692
Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01
Yang, L., Li, X., Shi, J., Shen, F., Qi, F., Gao, B., … Zhou, C. (2020). Evaluation of conditioned latin hypercube sampling for soil mapping based on a machine learning method. Geoderma, 369, 114337. doi:10.1016/j.geoderma.2020.114337