9 References
Appel, M., & Pebesma, E. (2019). On-demand processing of data cubes from satellite image collections with the gdalcubes library. Data, 4(3), 92. doi:10.3390/data4030092
Benedict, M. Q., Levine, R. S., Hawley, W. A., & Lounibos, L. P. (2007). Spread of the tiger: Global risk of invasion by the mosquito aedes albopictus. Vector-Borne and Zoonotic Diseases, 7(1), 76–85. doi:10.1089/vbz.2006.0562
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., … Jones, Z. M. (2016). mlr: Machine Learning in R. The Journal of Machine Learning Research, 17(1), 5938–5942. Retrieved from https://jmlr.org/papers/v17/15-066.html
Bivand, R., Pebesma, E., & Rubio, V. (2013). Applied Spatial Data Analysis with R (2nd ed., p. 401). Heidelberg: Springer.
Bonannella, C., Hengl, T., Heisig, J., Parente, L., Wright, M. N., Herold, M., & Bruin, S. de. (2022). Forest tree species distribution for Europe 2000-2020: mapping potential and realized distributions using spatiotemporal Machine Learning. PeerJ, 10, e13728. doi:10.7717/peerj.13728
Brown, P. E. (2015). Model-based geostatistics the easy way. Journal of Statistical Software, 63, 1–24. doi:10.18637/jss.v063.i12
Da Re, D., Montecino-Latorre, D., Vanwambeke, S. O., & Marcantonio, M. (2021). Will the yellow fever mosquito colonise europe? Assessing the re-introduction of aedes aegypti using a process-based population dynamical model. Ecological Informatics, 61, 101180. doi:10.1016/j.ecoinf.2020.101180
Da Re, D., Van Bortel, W., Reuss, F., Muller, R., Boyer, S., Montarsi, F., et al.others. (2021). dynamAedes: A unified modelling framework for invasive aedes mosquitoes. bioRxiv. doi:10.1101/2021.12.21.473628
Diggle, P. J., & Ribeiro Jr, P. J. (2007). Model-based Geostatistics (p. 288). Springer.
Erwig, M., Gu, R. H., Schneider, M., & Vazirgiannis, M. (1999). Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3), 269–296.
Fois, M., Cuena-Lombraña, A., Fenu, G., & Bacchetta, G. (2018). Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modelling, 385, 124–132. doi:10.1016/j.ecolmodel.2018.07.018
Gasch, C. K., Hengl, T., Gräler, B., Meyer, H., Magney, T. S., & Brown, D. J. (2015). Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+ T: The Cook Agronomy Farm data set. Spatial Statistics, 14, 70–90. doi:10.1016/j.spasta.2015.04.001
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al.others. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. doi:10.1126/science.1244693
Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended isolation forest. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1479–1489. doi:10.1109/TKDE.2019.2947676
Hengl, T., Heuvelink, G. B. M., Perčec-Tadić, M., & Pebesma, E. J. (2012). Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theoretical and Applied Climatology, 107(1), 265–277. doi:10.1007/s00704-011-0464-2
Hengl, Tomislav, Jesus, J. M. de, MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., et al.others. (2014). SoilGrids1km: Global soil information based on automated mapping. PloS One, 9(8), e105992. doi:10.1371/journal.pone.0105992
Hengl, T., & MacMillan, R. A. (2019). Predictive soil mapping with R (p. 370). Wageningen: OpenGeoHub Foundation. Retrieved from https://soilmapper.org
Hengl, Tomislav, Miller, M. A. E., Križan, J., Shepherd, K. D., Sila, A., Kilibarda, M., … Crouch, J. (2021). African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports, 11(1), 1–18. doi:10.1038/s41598-021-85639-y
Hengl, Tomislav, Nikolić, M., & MacMillan, R. (2013). Mapping efficiency and information content. International Journal of Applied Earth Observation and Geoinformation, 22, 127–138. doi:10.1016/j.jag.2012.02.005
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518. doi:10.7717/peerj.5518
Hengl, T., Roudier, P., Beaudette, D., & Pebesma, E. (2015). plotKML: Scientific visualization of spatio-temporal data. Journal of Statistical Software, 63(5), 1–25. doi:10.18637/jss.v063.i05
Hijmans, R. J. (2019). Spatial data in R. United States: GFC for the Innovation Lab for Collaborative Research on Sustainable Intensification. Retrieved from https://rspatial.org/
Ishwaran, H., & Kogalur, U. B. (2022). Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). CRAN. Retrieved from https://cran.r-project.org/package=randomForestSRC
Iturbide, M., Bedia, J., Herrera, S., Hierro, O. del, Pinto, M., & Gutiérrez, J. M. (2015). A framework for species distribution modelling with improved pseudo-absence generation. Ecological Modelling, 312, 166–174. doi:10.1016/j.ecolmodel.2015.05.018
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 1–20. doi:10.1038/sdata.2017.122
Kilibarda, Milan, Hengl, T., Heuvelink, G. B., Gräler, B., Pebesma, E., Perčec Tadić, M., & Bajat, B. (2014). Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical Research: Atmospheres, 119(5), 2294–2313. doi:10.1002/2013JD020803
Kilibarda, M., & Protić, D. (2019). Introduction to geovisualization and web cartography (p. 184). Belgrade, Serbia: University of Belgrade, Faculty of Civil Engineering. Retrieved from http://osgl.grf.bg.ac.rs/books/gvvk-en/
Lal, R. (2022). Soil Organic Carbon and Feeding the Future: Basic Soil Processes. CRC Press.
Lamigueiro, O. P. (2014). Displaying Time Series, Spatial, and Space-Time Data with R. CRC Press.
Leal, M., & Spalding, M. D. (Eds.). (2022). The State of the World’s Mangroves 2022 (p. 49). Arlington, VA: Global Mangrove Alliance.
Li, X., Zhou, Y., Zhao, M., & Zhao, X. (2020). A harmonized global nighttime light dataset 1992–2018. Scientific Data, 7(1), 1–9. doi:10.1038/s41597-020-0510-y
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1), 1–39. doi:10.1145/2133360.2133363
Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103–114. doi:10.1111/j.1600-0587.2009.06039.x
Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. CRC Press.
Lu, B., & Hardin, J. (2021). A unified framework for random forest prediction error estimation. Journal of Machine Learning Research, 22(8), 1–41. Retrieved from http://jmlr.org/papers/v22/18-558.html
Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1-2), 138–152. doi:10.1016/j.geoderma.2009.10.007
Marcer, A., Chapman, A. D., Wieczorek, J. R., Xavier Picó, F., Uribe, F., Waller, J., & Ariño, A. H. (2022). Uncertainty matters: Ascertaining where specimens in natural history collections come from and its implications for predicting species distributions. Ecography, n/a(n/a), e06025. doi:10.1111/ecog.06025
Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124), 1198–1201. doi:10.1126/science.1228026
Martinez-Minaya, J., Cameletti, M., Conesa, D., & Pennino, M. G. (2018). Species distribution modeling: A statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 32(11), 3227–3244. doi:10.1007/s00477-018-1548-7
McBratney, A. B. (1998). Some considerations on methods for spatially aggregating and disaggregating soil information. Nutrient Cycling in Agroecosystems, 50, 51–62.
Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7(Jun), 983–999.
Meyer, H., & Pebesma, E. (2021). Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution, 12(9), 1620–1633. doi:10.1111/2041-210X.13650
Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems: Principles, techniques, management and applications (Vol. 1, pp. 481–492). Wiley.
Møller, A. B., Beucher, A. M., Pouladi, N., & Greve, M. H. (2020). Oblique geographic coordinates as covariates for digital soil mapping. SOIL, 6(2), 269–289.
Molnar, C. (2020). Interpretable Machine Learning. Lulu.com. Retrieved from https://christophm.github.io/interpretable-ml-book/
Mu, H., Li, X., Wen, Y., Huang, J., Du, P., Su, W., … Geng, M. (2022). A global record of annual terrestrial human footprint dataset from 2000 to 2018. Scientific Data, 9(1), 1–9. doi:10.1038/s41597-022-01284-8
Murray, N. J., Worthington, T. A., Bunting, P., Duce, S., Hagger, V., Lovelock, C. E., et al.others. (2022). High-resolution mapping of losses and gains of earth’s tidal wetlands. Science, 376(6594), 744–749. doi:10.1126/science.abm9583
Nelson, A., Weiss, D. J., Etten, J. van, Cattaneo, A., McMenomy, T. S., & Koo, J. (2019). A suite of global accessibility indicators. Scientific Data, 6(1), 1–9. doi:10.1038/s41597-019-0265-5
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS soil, the largest expandable soil dataset for europe: A review. European Journal of Soil Science, 69(1), 140–153. doi:10.1111/ejss.12499
Pebesma, E. (2012). spacetime: Spatio-temporal data in R. Journal of Statistical Software, 51(7), 1–30. doi:10.18637/jss.v051.i07
Pebesma, E., Cornford, D., Dubois, G., Heuvelink, G. B., Hristopulos, D., Pilz, J., … Skøien, J. O. (2011). INTAMAP: the design and implementation of an interoperable automated interpolation web service. Computers & Geosciences, 37(3), 343–352. doi:10.1016/j.cageo.2010.03.019
Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. doi:10.1038/nature20584
Polley, E. C., & van der Laan, M. J. (2010). Super learner in prediction. U.C. Berkeley Division of Biostatistics. Retrieved from https://biostats.bepress.com/ucbbiostat/paper266
Potapov, P., Hansen, M. C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., … Ying, Q. (2020). Landsat analysis ready data for global land cover and land cover change mapping. Remote Sensing, 12(3), 426. doi:10.3390/rs12030426
Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., & Thompson, J. (2018). Soil property and class maps of the conterminous united states at 100-meter spatial resolution. Soil Science Society of America Journal, 82(1), 186–201. doi:10.2136/sssaj2017.04.0122
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., … Thuiller, W. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. doi:10.1111/ecog.02881
Rudmin, J. W. (2010). Calculating the exact pooled variance. arXiv Preprint, 1007.1012.
Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences, 114(36), 9575–9580. doi:10.1073/pnas.1706103114
Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., et al.others. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13(5), 055002. doi:10.1088/1748-9326/aabe1c
Sekulić, A., Kilibarda, M., Heuvelink, G., Nikolić, M., & Bajat, B. (2020). Random Forest Spatial Interpolation. Remote Sensing, 12(10), 1687. doi:10.3390/rs12101687
Seni, G., & Elder, J. F. (2010). Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions. Morgan & Claypool Publishers.
Smith, D. B. C., Woodruff, W. F., Solano, L. G., Ellefsen, F., & Karl, J. (2014). Geochemical and mineralogical maps for soils of the conterminous united states. Denver, CO: USGS Geology, Energy,; Minerals Science Center. Retrieved from https://pubs.usgs.gov/ds/801/
Sothe, C., Gonsamo, A., Arabian, J., & Snider, J. (2022). Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations. Geoderma, 405, 115402. doi:10.1016/j.geoderma.2021.115402
Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PloS One, 8(2), e55158. doi:10.1371/journal.pone.0055158
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed., p. 481). New York: Springer-Verlag.
Wikle, C. K., Zammit-Mangion, A., & Cressie, N. (2019). Spatio-Temporal Statistics with R. CRC Press.
Witjes, M., Parente, L., Diemen, C. J. van, Hengl, T., Landa, M., Brodskỳ, L., et al.others. (2022). A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for europe (2000–2019) based on LUCAS, CORINE and GLAD landsat. PeerJ, 10, e13573. doi:10.7717/peerj.13573
Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resources Research, 55(6), 5053–5073. doi:10.1029/2019WR024873
Zhang, C., & Ma, Y. (2012). Ensemble machine learning: Methods and applications. Springer New York.
Zhang, J., & Li, S. (2017). A review of machine learning based species’ distribution modelling. In 2017 international conference on industrial informatics-computing technology, intelligent technology, industrial information integration (ICIICII) (pp. 199–206). IEEE. doi:10.1109/ICIICII.2017.76